參數(shù)資料
型號(hào): uPSD3234AV-24T1T
廠商: 意法半導(dǎo)體
英文描述: Flash Programmable System Devices with 8032 Microcontroller Core
中文描述: 閃存可編程系統(tǒng)設(shè)備與8032微控制器內(nèi)核
文件頁(yè)數(shù): 59/170頁(yè)
文件大?。?/td> 2717K
代理商: UPSD3234AV-24T1T
第1頁(yè)第2頁(yè)第3頁(yè)第4頁(yè)第5頁(yè)第6頁(yè)第7頁(yè)第8頁(yè)第9頁(yè)第10頁(yè)第11頁(yè)第12頁(yè)第13頁(yè)第14頁(yè)第15頁(yè)第16頁(yè)第17頁(yè)第18頁(yè)第19頁(yè)第20頁(yè)第21頁(yè)第22頁(yè)第23頁(yè)第24頁(yè)第25頁(yè)第26頁(yè)第27頁(yè)第28頁(yè)第29頁(yè)第30頁(yè)第31頁(yè)第32頁(yè)第33頁(yè)第34頁(yè)第35頁(yè)第36頁(yè)第37頁(yè)第38頁(yè)第39頁(yè)第40頁(yè)第41頁(yè)第42頁(yè)第43頁(yè)第44頁(yè)第45頁(yè)第46頁(yè)第47頁(yè)第48頁(yè)第49頁(yè)第50頁(yè)第51頁(yè)第52頁(yè)第53頁(yè)第54頁(yè)第55頁(yè)第56頁(yè)第57頁(yè)第58頁(yè)當(dāng)前第59頁(yè)第60頁(yè)第61頁(yè)第62頁(yè)第63頁(yè)第64頁(yè)第65頁(yè)第66頁(yè)第67頁(yè)第68頁(yè)第69頁(yè)第70頁(yè)第71頁(yè)第72頁(yè)第73頁(yè)第74頁(yè)第75頁(yè)第76頁(yè)第77頁(yè)第78頁(yè)第79頁(yè)第80頁(yè)第81頁(yè)第82頁(yè)第83頁(yè)第84頁(yè)第85頁(yè)第86頁(yè)第87頁(yè)第88頁(yè)第89頁(yè)第90頁(yè)第91頁(yè)第92頁(yè)第93頁(yè)第94頁(yè)第95頁(yè)第96頁(yè)第97頁(yè)第98頁(yè)第99頁(yè)第100頁(yè)第101頁(yè)第102頁(yè)第103頁(yè)第104頁(yè)第105頁(yè)第106頁(yè)第107頁(yè)第108頁(yè)第109頁(yè)第110頁(yè)第111頁(yè)第112頁(yè)第113頁(yè)第114頁(yè)第115頁(yè)第116頁(yè)第117頁(yè)第118頁(yè)第119頁(yè)第120頁(yè)第121頁(yè)第122頁(yè)第123頁(yè)第124頁(yè)第125頁(yè)第126頁(yè)第127頁(yè)第128頁(yè)第129頁(yè)第130頁(yè)第131頁(yè)第132頁(yè)第133頁(yè)第134頁(yè)第135頁(yè)第136頁(yè)第137頁(yè)第138頁(yè)第139頁(yè)第140頁(yè)第141頁(yè)第142頁(yè)第143頁(yè)第144頁(yè)第145頁(yè)第146頁(yè)第147頁(yè)第148頁(yè)第149頁(yè)第150頁(yè)第151頁(yè)第152頁(yè)第153頁(yè)第154頁(yè)第155頁(yè)第156頁(yè)第157頁(yè)第158頁(yè)第159頁(yè)第160頁(yè)第161頁(yè)第162頁(yè)第163頁(yè)第164頁(yè)第165頁(yè)第166頁(yè)第167頁(yè)第168頁(yè)第169頁(yè)第170頁(yè)
59/170
uPSD3234A, uPSD3234BV, uPSD3233B, uPSD3233BV
As data bits shift out to the right, zeros come in
from the left. When the MSB of the data byte is at
the output position of the shift register, then the '1'
that was initially loaded into the 9th position, is just
to the left of the MSB, and all positions to the left
of that contain zeros. This condition flags the TX
Control block to do one last shift and then deacti-
vate SEND and set T1. Both of these actions occur
at S1P1. Both of these actions occur at S1P1 of
the 10th machine cycle after “WRITE to SBUF.”
Reception is initiated by the condition REN = 1 and
R1 = 0. At S6P2 of the next machine cycle, the RX
Control unit writes the bits 11111110 to the receive
shift register, and in the next clock phase activates
RECEIVE.
RECEIVE enables SHIFT CLOCK to the alternate
output function line of TxD. SHIFT CLOCK makes
transitions at S3P1 and S6P1 of every machine
cycle in which RECEIVE is active, the contents of
the receive shift register are shifted to the left one
position. The value that comes in from the right is
the value that was sampled at the RxD pin at S5P2
of the same machine cycle.
As data bits come in from the right, '1s' shift out to
the left. When the '0' that was initially loaded into
the right-most position arrives at the left-most po-
sition in the shift register, it flags the RX Control
block to do one last shift and load SBUF. At S1P1
of the 10th machine cycle after the WRITE to
SCON that cleared RI, RECEIVE is cleared as RI
is set.
More About Mode 1.
Ten bits are transmitted
(through TxD), or received (through RxD): a start
Bit (0), 8 data bits (LSB first). and a Stop Bit (1). On
receive, the Stop Bit goes into RB8 in SCON. In
the uPSD323X Devices the baud rate is deter-
mined by the Timer 1 or Timer 2 over-flow rate.
Figure 29., page 62
shows a simplified functional
diagram of the serial port in Mode 1, and associat-
ed timings for transmit receive.
Transmission is initiated by any instruction that
uses SBUF as a destination register. The “WRITE
to SBUF” signal also loads a '1' into the 9th bit po-
sition of the transmit shift register and flags the TX
Control unit that a transmission is requested.
Transmission actually commences at S1P1 of the
machine cycle following the next rollover in the di-
vide-by-16 counter. (Thus, the bit times are syn-
chronized to the divide-by-16 counter, not to the
“WRITE to SBUF” signal.)
The transmission begins with activation of SEND
which puts the start bit at TxD. One bit time later,
DATA is activated, which enables the output bit of
the transmit shift register to TxD. The first shift
pulse occurs one bit time after that.
As data bits shift out to the right, zeros are clocked
in from the left. When the MSB of the data byte is
at the output position of the shift register, then the
'1' that was initially loaded into the 9th position is
just to the left of the MSB, and all positions to the
left of that contain zeros. This condition flags the
TX Control unit to do one last shift and then deac-
tivate SEND and set TI. This occurs at the 10th di-
vide-by-16 rollover after “WRITE to SBUF.”
Reception is initiated by a detected 1-to-0 transi-
tion at RxD. For this purpose RxD is sampled at a
rate of 16 times whatever baud rate has been es-
tablished. When a transition is detected, the di-
vide-by-16 counter is immediately reset, and 1FFH
is written into the input shift register. Resetting the
divide-by-16 counter aligns its roll-overs with the
boundaries of the incoming bit times.
The 16 states of the counter divide each bit time
into 16ths. At the 7th, 8th, and 9th counter states
of each bit time, the bit detector samples the value
of RxD. The value accepted is the value that was
seen in at least 2 of the 3 samples. This is done for
noise rejection. If the value accepted during the
first bit time is not '0,' the receive circuits are reset
and the unit goes back to looking for an-other 1-to-
0 transition. This is to provide rejection of false
start bits. If the start bit proves valid, it is shifted
into the input shift register, and reception of the re-
set of the rest of the frame will proceed.
As data bits come in from the right, '1s' shift out to
the left. When the start bit arrives at the left-most
position in the shift register (which in Mode 1 is a
9-bit register), it flags the RX Control block to do
one last shift, load SBUF and RB8, and set RI. The
signal to load SBUF and RB8, and to set RI, will be
generated if, and only if, the following conditions
are met at the time the final shift pulse is generat-
ed:
1.
R1 = 0, and
2.
Either SM2 = 0, or the received Stop Bit = 1.
If either of these two conditions is not met, the re-
ceived frame is irretrievably lost. If both conditions
are met, the Stop Bit goes into RB8, the 8 data bits
go into SBUF, and RI is activated. At this time,
whether the above conditions are met or not, the
unit goes back to looking for a 1-to-0 transition in
RxD.
相關(guān)PDF資料
PDF描述
uPSD3234AV-24T6T Flash Programmable System Devices with 8032 Microcontroller Core
uPSD3234AV-40T1T Flash Programmable System Devices with 8032 Microcontroller Core
uPSD3234AV-40T6T Flash Programmable System Devices with 8032 Microcontroller Core
UPSD3233BV Flash Programmable System Devices with 8032 Microcontroller Core
uPSD3233BV-40T6T Flash Programmable System Devices with 8032 Microcontroller Core
相關(guān)代理商/技術(shù)參數(shù)
參數(shù)描述
UPSD3234AV-24T6 制造商:STMICROELECTRONICS 制造商全稱:STMicroelectronics 功能描述:Flash Programmable System Device with 8032 Microcontroller Core
UPSD3234AV-24T6T 制造商:STMICROELECTRONICS 制造商全稱:STMicroelectronics 功能描述:Flash Programmable System Device with 8032 Microcontroller Core
UPSD3234AV-24U1 制造商:STMICROELECTRONICS 制造商全稱:STMicroelectronics 功能描述:Flash Programmable System Device with 8032 Microcontroller Core
UPSD3234AV-24U1T 制造商:STMICROELECTRONICS 制造商全稱:STMicroelectronics 功能描述:Flash Programmable System Device with 8032 Microcontroller Core
UPSD3234AV-24U6 制造商:STMICROELECTRONICS 制造商全稱:STMicroelectronics 功能描述:Flash Programmable System Device with 8032 Microcontroller Core