TPS7301Q, TPS7325Q, TPS7330Q, TPS7333Q, TPS7348Q, TPS7350Q
LOW-DROPOUT VOLTAGE REGULATORS
WITH INTEGRATED DELAYED RESET FUNCTION
SLVS124F – JUNE 1995 – REVISED JANUARY 1999
35
POST OFFICE BOX 655303
DALLAS, TEXAS 75265
APPLICATION INFORMATION
The TPS73xx series of low-dropout (LDO) regulators overcome many of the shortcomings of earlier generation
LDOs, while adding features such as a power-saving shutdown mode and a supply-voltage supervisor. The
TPS73xx family includes five fixed-output voltage regulators: the TPS7325 (2.5 V), TPS7330 (3 V), TPS7333
(3.3 V), the TPS7348 (4.85 V), and the TPS7350 (5 V). The family also offers an adjustable device, the TPS7301
(adjustable from 1.2 V to 9.75 V).
device operation
The TPS73xx, unlike many other LDOs, features very low quiescent currents that remain virtually constant even
with varying loads. Conventional LDO regulators use a pnp-pass element, the base current of which is directly
proportional to the load current through the regulator (I
B
= I
C
/
β
). Close examination of the data sheets reveals
that such devices are typically specified under near no-load conditions; actual operating currents are much
higher as evidenced by typical quiescent current versus load current curves (see Figure 7). The TPS73xx uses
a PMOS transistor to pass current; because the gate of the PMOS element is voltage driven, operating currents
are low and invariable over the full load range. The TPS73xx specifications reflect actual performance under
load.
Another pitfall associated with the pnp-pass element is its tendency to saturate when the device goes into
dropout. The resulting drop in
β
forces an increase in I
B
to maintain the load. During power-up, this translates
to large start-up currents. Systems with limited supply current may fail to start up. In battery-powered systems,
it means rapid battery discharge when the voltage decays below the minimum required for regulation. The
TPS73xx quiescent current remains low even when the regulator drops out, thus eliminating both problems.
Included in the TPS73xx family is a 4.85-V regulator, the TPS7348. Designed specifically for 5-V cellular
systems, its 4.85-V output, regulated to within
±
2%, allows for operation within the low-end limit of 5-V systems
specified to
±
5% tolerance; therefore, maximum regulated operating lifetime is obtained from a battery pack
before the device drops out, adding crucial talk minutes between charges.
The TPS73xx family also features a shutdown mode that places the output in the high-impedance state
(essentially equal to the feedback-divider resistance) and reduces quiescent current to under 0.5
μ
A. When the
shutdown feature is not used, EN should be tied to ground. Response to an enable transition is quick; regulated
output voltage is reestablished in typically 120
μ
s.
minimum load requirements
The TPS73xx family is stable even at zero load; no minimum load is required for operation.
SENSE connection
The SENSE terminal of fixed-output devices must be connected to the regulator output for proper functioning
of the regulator. Normally, this connection should be as short as possible; however, the connection can be made
near a critical circuit (remote sense) to improve performance at that point. Internally, SENSE connects to a
high-impedance wide-bandwidth amplifier through a resistor-divider network, and noise pickup feeds through
to the regulator output. It is essential to route the SENSE connection in such a way as to minimize/avoid noise
pickup. Adding an RC network between SENSE and OUT to filter noise is not recommended because it can
cause the regulator to oscillate.
external capacitor requirements
An input capacitor is not required; however, a ceramic bypass capacitor (0.047 pF to 0.1
μ
F) improves load
transient response and noise rejection when the TPS73xx is located more than a few inches from the power
supply. A higher-capacitance electrolytic capacitor may be necessary if large (hundreds of milliamps) load
transients with fast rise times are anticipated.