參數(shù)資料
型號: TDA9887
廠商: NXP Semiconductors N.V.
英文描述: I2C-bus controlled multistandard alignment-free IF-PLL demodulator with FM radio
中文描述: 的I2C總線控制的多標(biāo)準(zhǔn)對準(zhǔn)無中頻鎖相環(huán)調(diào)頻廣播解調(diào)器
文件頁數(shù): 54/58頁
文件大?。?/td> 308K
代理商: TDA9887
2004 Aug 25
54
Philips Semiconductors
Product specification
I
2
C-bus controlled multistandard alignment-free
IF-PLL demodulator with FM radio
TDA9887
15 SOLDERING
15.1
Introduction to soldering surface mount
packages
Thistextgivesaverybriefinsighttoacomplextechnology.
A more in-depth account of soldering ICs can be found in
our “Data Handbook IC26; Integrated Circuit Packages”
(document order number 9398 652 90011).
There is no soldering method that is ideal for all surface
mount IC packages. Wave soldering can still be used for
certainsurfacemountICs,butitisnotsuitableforfinepitch
SMDs. In these situations reflow soldering is
recommended.
15.2
Reflow soldering
Reflow soldering requires solder paste (a suspension of
fine solder particles, flux and binding agent) to be applied
to the printed-circuit board by screen printing, stencilling or
pressure-syringe dispensing before package placement.
Driven by legislation and environmental forces the
worldwide use of lead-free solder pastes is increasing.
Several methods exist for reflowing; for example,
convection or convection/infrared heating in a conveyor
type oven. Throughput times (preheating, soldering and
cooling) vary between 100 seconds and 200 seconds
depending on heating method.
Typical reflow peak temperatures range from
215
°
C to 270
°
C depending on solder paste material. The
top-surface temperature of the packages should
preferably be kept:
below 225
°
C (SnPb process) or below 245
°
C (Pb-free
process)
– for all BGA, HTSSON-T and SSOP-T packages
– for packages with a thickness
2.5 mm
– for packages with a thickness < 2.5 mm and a
volume
350 mm
3
so called thick/large packages.
below 240
°
C (SnPb process) or below 260
°
C (Pb-free
process) for packages with a thickness < 2.5 mm and a
volume < 350 mm
3
so called small/thin packages.
Moisture sensitivity precautions, as indicated on packing,
must be respected at all times.
15.3
Wave soldering
Conventional single wave soldering is not recommended
forsurfacemountdevices(SMDs)orprinted-circuitboards
with a high component density, as solder bridging and
non-wetting can present major problems.
To overcome these problems the double-wave soldering
method was specifically developed.
If wave soldering is used the following conditions must be
observed for optimal results:
Use a double-wave soldering method comprising a
turbulent wave with high upward pressure followed by a
smooth laminar wave.
For packages with leads on two sides and a pitch (e):
– larger than or equal to 1.27 mm, the footprint
longitudinal axis is
preferred
to be parallel to the
transport direction of the printed-circuit board;
– smaller than 1.27 mm, the footprint longitudinal axis
must
be parallel to the transport direction of the
printed-circuit board.
The footprint must incorporate solder thieves at the
downstream end.
Forpackageswithleadsonfoursides,thefootprintmust
be placed at a 45
°
angle to the transport direction of the
printed-circuit board. The footprint must incorporate
solder thieves downstream and at the side corners.
During placement and before soldering, the package must
be fixed with a droplet of adhesive. The adhesive can be
applied by screen printing, pin transfer or syringe
dispensing. The package can be soldered after the
adhesive is cured.
Typical dwell time of the leads in the wave ranges from
3 seconds to 4 seconds at 250
°
C or 265
°
C, depending
on solder material applied, SnPb or Pb-free respectively.
A mildly-activated flux will eliminate the need for removal
of corrosive residues in most applications.
15.4
Manual soldering
Fix the component by first soldering two
diagonally-opposite end leads. Use a low voltage (24 V or
less) soldering iron applied to the flat part of the lead.
Contact time must be limited to 10 seconds at up to
300
°
C.
When using a dedicated tool, all other leads can be
soldered in one operation within 2 seconds to 5 seconds
between 270
°
C and 320
°
C.
相關(guān)PDF資料
PDF描述
TDA9888 DVB selective AGC amplifier
TDA9889 DVB selective AGC amplifier
TDA9889TS DVB selective AGC amplifier
TDA9888TS DVB selective AGC amplifier
TDA9901 Wideband differential digital controlled variable gain amplifier(寬帶差分?jǐn)?shù)控可變增益放大器)
相關(guān)代理商/技術(shù)參數(shù)
參數(shù)描述
TDA9887HN/V4 制造商:PHILIPS 制造商全稱:NXP Semiconductors 功能描述:I2C-bus controlled multistandard alignment-free IF-PLL demodulator with FM radio
TDA9887HN/V4,518 功能描述:射頻接收器 DEMODULATOR VIF AND RoHS:否 制造商:Skyworks Solutions, Inc. 類型:GPS Receiver 封裝 / 箱體:QFN-24 工作頻率:4.092 MHz 工作電源電壓:3.3 V 封裝:Reel
TDA9887HN/V4-T 功能描述:射頻接收器 DEMODULATOR VIF AND SIF RoHS:否 制造商:Skyworks Solutions, Inc. 類型:GPS Receiver 封裝 / 箱體:QFN-24 工作頻率:4.092 MHz 工作電源電壓:3.3 V 封裝:Reel
TDA9887T/V4 功能描述:射頻接收器 DEMODULATOR VIF AND SIF RoHS:否 制造商:Skyworks Solutions, Inc. 類型:GPS Receiver 封裝 / 箱體:QFN-24 工作頻率:4.092 MHz 工作電源電壓:3.3 V 封裝:Reel
TDA9887T/V4,112 功能描述:射頻接收器 DEMODULATOR VIF AND RoHS:否 制造商:Skyworks Solutions, Inc. 類型:GPS Receiver 封裝 / 箱體:QFN-24 工作頻率:4.092 MHz 工作電源電壓:3.3 V 封裝:Reel