
www.ti.com
Designing for Load Transients
SLTS247B – JUNE 2005 – REVISED OCTOBER 2007
The transient response of the dc/dc converter has been characterized using a load transient with a di/dt of 1 A/s.
The typical voltage deviation for this load transient is given in the data sheet specification table using the optional
value of output capacitance. As the di/dt of a transient is increased, the response of a converter's regulation
circuit ultimately depends on its output capacitor decoupling network. This is an inherent limitation with any dc/dc
converter once the speed of the transient exceeds its bandwidth capability. If the target application specifies a
higher di/dt or lower voltage deviation, the requirement can only be met with additional output capacitor
decoupling. In these cases, special attention must be paid to the type, value, and ESR of the capacitors selected.
If the transient performance requirements exceed those specified in the data sheet, the selection of output
capacitors becomes more important. Review the minimum ESR in the characteristic data sheet for details on the
capacitance maximum.
Table 3. Recommended Input/Output Capacitors (1)
CAPACITOR CHARACTERISTICS
QUANTITY
85C
CAPACITOR VENDOR/
EQUIVALENT
VENDOR
MAXIMUM
PHYSICAL
COMPONENT
WORKING
VALUE
SERIES
INPUT
OUTPUT
NUMBER
RIPPLE
SIZE
SERIES
VOLTAGE
(F)
RESISTANCE
BUS(2)
BUS
CURRENT
(mm)
(ESR)
(Irms)
Panasonic WA (SMT)
10 V
120
0.035
2800 mA
8
× 6,9
1
≤ 4(2)
EEFWA1A121P(3)
FC (SMT)
25 V
47
0.400
230 mA
8
× 6,2
1
1(2)
EEVFC1E470P(3)
6.3 V
47
0.018
2500 mA
7,3
×4,3
1
≤ 2
EEFCD0J470R
Panasonic SL SP-cap(SMT)
6.3 V
56
0.009
3000 mA
7,3
× 4,3
1
≤ 1
EEFSL0J560R
United Chemi-con PXA (SMT)
10 V
47
0.031
2250 mA
6,3
× 5,7
1
PXA10VC470MF60TP
FS
10 V
100
0.040
2100 mA
6,3
× 9,8
1
≤ 3
10FS100M
LXZ
16 V
100
0.250
290 mA
6,3
× 11,5
1
LXZ16VB101M6X11LL
MVZ (SMT)
16 V
100
0.440
230 mA
6,3
× 5,7
1
MVZ16VC101MF60TP
Nichicon UWG (SMT)
16 V
100
0.400
230 mA
8
× 6,2
1
UWG1C101MCR1GS
F559(Tantalum)
10 V
100
0.055
2000 mA
7,7
× 4,3
1
≤ 3
F551A107MN
PM
10 V
100
0.550
210 mA
6
× 11
1
UPM1A101MEH
Sanyo Os-con\ POS-Cap SVP
10 V
68
0.025
2400 mA
7,3
× 4,3
1
≤ 3
10TPE68M
(SMT)
6.3 V
47
0.074
1110 mA
5
× 6
1
≤ 3
6SVP47M
SP
10 V
56
0.045
1710 mA
6,3
× 5
1
≤ 3
10SP56M
10 V
47
0.100
1100 mA
7,3L
× 4,3W
1
≤ 3
TPSD476M010R0100
AVX Tantalum TPS (SMD)
10 V
47
0.060
> 412 mA
× 4,1H
1
≤ 53
TPSB476M010R0500
Kemet T520 (SMD)
10 V
68
0.060
>1200 mA
7,3L
× 5,7W
1
≤ 3
T520V686M010ASE060
AO-CAP
6.3 V
47
0.028
>1100 mA
× 4H
1
≤ 3
A700V476M006AT
Vishay/Sprague 594D/595D
10 V
68
0.100
>1000 mA
7,3L
× 6W ×
1
≤ 3
594D686X0010C2T
(SMD)
10 V
68
0.240
680 mA
4,1H
1
≤ 3
595D686X0010C2T
94SL
16 V
47
0.070
1550 mA
8
× 5
1
≤ 3
94SL476X0016EBP
7,5L
× 4,0W
TDK Ceramic X5R (Leaded)
10 V
47
0.005
>1400 mA
≥ 1
≤ 2
FK22X5R1A476M
× 8,0H
TDK Ceramic X5R
6.3 V
22
0.002
>1400 mA
≥ 2(4)
≤ 3
C3225X5R0J226KT/MT
1210 case
Murata Ceramic X5R
6.3 V
22
0.002
>1000 mA
≥ 2(4)
≤ 3
GRM32ER61J223M
3225 mm
Kemet
6.3 V
22
0.002
>1000 mA
≥ 2(4)
≤ 3
C1210C226K9PAC
TDK Ceramic X5R
6.3 V
47
0.002
>1400 mA
≥ 1
≤ 2
C3225X5R0J476KT/MT
1210 case
Murata Ceramic X5R
6.3 V
47
0.002
>1000 mA
≥ 1
≤ 2
GRM32ER60J476M/6.3
3225 mm
Kemet
6.3 V
47
0.002
>1000 mA
≥ 1
≤ 2
C1210C476K9PAC
(1)
Check with capacitor manufacturers for availability and lead-free status.
(2)
A ceramic capacitor is required on the input. An electrolytic capacitor can be added to the output for improved transient response.
(3)
An optional through-hole capacitor available.
(4)
A total capacitance of 44 F is an acceptable replacement for a single 47-F capacitor.
10
Copyright 2005–2007, Texas Instruments Incorporated