
0
60
40
2
4
6
8
10
70
50
90
100
80
V
O = 0.8 V
V
O = 1.2 V
V
O = 1.8 V
V
I = 12 V
fSW = 500 kHz
I
O – Output Current – A
h
–
E
ff
ic
ie
n
c
y
–
%
0
60
40
2
4
6
8
10
70
50
90
100
80
V
I = 12 V
fSW = 750 kHz
V
O = 0.8 V
V
O = 1.8 V
I
O – Output Current – A
h
–
E
ff
ic
ie
n
c
y
–
%
V
O = 1.2 V
V
O = 3.3 V
V
O = 2.5 V
0
40
2
4
6
8
10
60
70
50
90
100
80
V
I = 12 V
fSW = 1 MHz
V
O = 2.5 V
V
O = 0.8 V
V
O = 1.8 V
V
O = 1.2 V
V
O = 3.3 V
I
O – Output Current – A
h
–
E
ff
ic
ie
n
c
y
–
%
0
2
4
6
8
10
1.0
0
1.5
0.5
2.5
3.0
2.0
P
D
–
P
o
w
e
r
D
is
s
ip
a
ti
o
n
–
W
I
O – Output Current – A
V
O = 0.8 V
V
O = 1.2 V
V
O = 3.3 V
V
O = 2.5 V
V
O = 1.8 V
V
I = 12 V
fSW = 1 MHz
V
I = 12 V
fSW = 500 kHz
V
O = 0.8 V
V
O = 1.2 V
V
O = 1.8 V
0
2
4
6
8
10
1.0
0
1.5
0.5
2.5
3.0
2.0
P
D
–
P
o
w
e
r
D
is
s
ip
a
ti
o
n
–
W
I
O – Output Current – A
0
2
4
6
8
10
1.0
0
1.5
0.5
2.5
3.0
2.0
V
I = 12 V
fSW = 750 kHz
V
O = 2.5 V
V
O = 1.8 V
V
O = 3.3 V
V
O = 0.8 V
V
O = 1.2 V
P
D
–
P
o
w
e
r
D
is
s
ip
a
ti
o
n
–
W
I
O – Output Current – A
40
20
60
30
80
90
70
50
T
A
–
A
m
b
ie
n
t
T
e
m
p
e
ra
tu
re
–
°C
0
1
2
3
4
5
P
D – Total Power Dissipation – W
400 LFM
Natural Convection
100 LFM
200 LFM
P
D(VOA)+PD(VOB)
V
I = 12 V
fSW = 500 kHz
40
20
60
30
80
90
70
50
T
A
–
A
m
b
ie
n
t
T
e
m
p
e
ra
tu
re
–
°C
0
1
2
3
4
5
P
D – Total Power Dissipation – W
400 LFM
Natural Convection
100 LFM
200 LFM
V
I = 12 V
fSW = 750 kHz
P
D(VOA)+PD(VOB)
40
20
60
30
80
90
70
50
V
I = 12 V
fSW = 1 MHz
400 LFM
Natural Convection
200 LFM
T
A
–
A
m
b
ie
n
t
T
e
m
p
e
ra
tu
re
–
°C
100 LFM
0
1
2
3
4
5
P
D(VOA)+PD(VOB)
P
D – Total Power Dissipation – W
SLTS295B – DECEMBER 2009 – REVISED DECEMBER 2010
www.ti.com
TYPICAL CHARACTERISTICS (VI = 12 V)
. (1)(2)
Figure 1. Efficiency
Figure 2. Efficiency
Figure 3. Efficiency
Figure 4. Power Dissipation
Figure 5. Power Dissipation
Figure 6. Power Dissipation
Figure 7. Safe Operating Area
Figure 8. Safe Operating Area
Figure 9. Safe Operating Area
(1)
The electrical characteristic data
(Figure 1 through
Figure 6) has been developed from actual products tested at 25°C. This data is
considered typical for the converter.
(2)
The temperature derating curves
(Figure 7 through
Figure 9) represent the conditions at which internal components are at or below the
manufacturer's maximum operating temperatures. Derating limits apply to modules soldered directly to a 100-mm x 100-mm,
double-sided PCB with 2-oz. copper. See the Safe Operating Area application section of this datasheet.
6
Copyright 2009–2010, Texas Instruments Incorporated