• 參數(shù)資料
    型號(hào): OR2T04A4J160I-DB
    廠商: LATTICE SEMICONDUCTOR CORP
    元件分類: FPGA
    英文描述: FPGA, 100 CLBS, 4800 GATES, PQFP160
    封裝: QFP-160
    文件頁(yè)數(shù): 157/196頁(yè)
    文件大?。?/td> 3475K
    代理商: OR2T04A4J160I-DB
    第1頁(yè)第2頁(yè)第3頁(yè)第4頁(yè)第5頁(yè)第6頁(yè)第7頁(yè)第8頁(yè)第9頁(yè)第10頁(yè)第11頁(yè)第12頁(yè)第13頁(yè)第14頁(yè)第15頁(yè)第16頁(yè)第17頁(yè)第18頁(yè)第19頁(yè)第20頁(yè)第21頁(yè)第22頁(yè)第23頁(yè)第24頁(yè)第25頁(yè)第26頁(yè)第27頁(yè)第28頁(yè)第29頁(yè)第30頁(yè)第31頁(yè)第32頁(yè)第33頁(yè)第34頁(yè)第35頁(yè)第36頁(yè)第37頁(yè)第38頁(yè)第39頁(yè)第40頁(yè)第41頁(yè)第42頁(yè)第43頁(yè)第44頁(yè)第45頁(yè)第46頁(yè)第47頁(yè)第48頁(yè)第49頁(yè)第50頁(yè)第51頁(yè)第52頁(yè)第53頁(yè)第54頁(yè)第55頁(yè)第56頁(yè)第57頁(yè)第58頁(yè)第59頁(yè)第60頁(yè)第61頁(yè)第62頁(yè)第63頁(yè)第64頁(yè)第65頁(yè)第66頁(yè)第67頁(yè)第68頁(yè)第69頁(yè)第70頁(yè)第71頁(yè)第72頁(yè)第73頁(yè)第74頁(yè)第75頁(yè)第76頁(yè)第77頁(yè)第78頁(yè)第79頁(yè)第80頁(yè)第81頁(yè)第82頁(yè)第83頁(yè)第84頁(yè)第85頁(yè)第86頁(yè)第87頁(yè)第88頁(yè)第89頁(yè)第90頁(yè)第91頁(yè)第92頁(yè)第93頁(yè)第94頁(yè)第95頁(yè)第96頁(yè)第97頁(yè)第98頁(yè)第99頁(yè)第100頁(yè)第101頁(yè)第102頁(yè)第103頁(yè)第104頁(yè)第105頁(yè)第106頁(yè)第107頁(yè)第108頁(yè)第109頁(yè)第110頁(yè)第111頁(yè)第112頁(yè)第113頁(yè)第114頁(yè)第115頁(yè)第116頁(yè)第117頁(yè)第118頁(yè)第119頁(yè)第120頁(yè)第121頁(yè)第122頁(yè)第123頁(yè)第124頁(yè)第125頁(yè)第126頁(yè)第127頁(yè)第128頁(yè)第129頁(yè)第130頁(yè)第131頁(yè)第132頁(yè)第133頁(yè)第134頁(yè)第135頁(yè)第136頁(yè)第137頁(yè)第138頁(yè)第139頁(yè)第140頁(yè)第141頁(yè)第142頁(yè)第143頁(yè)第144頁(yè)第145頁(yè)第146頁(yè)第147頁(yè)第148頁(yè)第149頁(yè)第150頁(yè)第151頁(yè)第152頁(yè)第153頁(yè)第154頁(yè)第155頁(yè)第156頁(yè)當(dāng)前第157頁(yè)第158頁(yè)第159頁(yè)第160頁(yè)第161頁(yè)第162頁(yè)第163頁(yè)第164頁(yè)第165頁(yè)第166頁(yè)第167頁(yè)第168頁(yè)第169頁(yè)第170頁(yè)第171頁(yè)第172頁(yè)第173頁(yè)第174頁(yè)第175頁(yè)第176頁(yè)第177頁(yè)第178頁(yè)第179頁(yè)第180頁(yè)第181頁(yè)第182頁(yè)第183頁(yè)第184頁(yè)第185頁(yè)第186頁(yè)第187頁(yè)第188頁(yè)第189頁(yè)第190頁(yè)第191頁(yè)第192頁(yè)第193頁(yè)第194頁(yè)第195頁(yè)第196頁(yè)
    Lattice Semiconductor
    63
    Data Sheet
    January 2003
    ORCA Series 2 FPGAs
    ORCA Timing Characteristics
    (continued)
    Table 15B. Derating for Commercial/Industrial
    Devices (OR2TxxB)
    Note: The derating tables shown above are for a typical critical path
    that contains 33% logic delay and 66% routing delay. Since the
    routing delay derates at a higher rate than the logic delay, paths
    with more than 66% routing delay will derate at a higher rate
    than shown in the table. The approximate derating values vs.
    temperature are 0.26% per °C for logic delay and 0.45% per °C
    for routing delay. The approximate derating values vs. voltage
    are 0.13% per mV for both logic and routing delays at 25 °C.
    In addition to supply voltage, process variation, and
    operating temperature, circuit and process improve-
    ments of the ORCA series FPGAs over time will result
    in signicant improvement of the actual performance
    over those listed for a speed grade. Even though lower
    speed grades may still be available, the distribution of
    yield to timing parameters may be several speed bins
    higher than that designated on a product brand. Design
    practices need to consider best-case timing parame-
    ters (e.g., delays = 0), as well as worst-case timing.
    The routing delays are a function of fan-out and the
    capacitance associated with the CIPs and metal inter-
    connect in the path. The number of logic elements that
    can be driven (or fan-out) by PFUs is unlimited,
    although the delay to reach a valid logic level can
    exceed timing requirements. It is difcult to make accu-
    rate routing delay estimates prior to design compilation
    based on fan-out. This is because the CAE software
    may delete redundant logic inserted by the designer to
    reduce fan-out, and/or it may also automatically reduce
    fan-out by net splitting.
    The waveform test points are given in the Measure-
    ment Conditions section of this data sheet. The timing
    parameters given in the electrical characteristics tables
    in this data sheet follow industry practices, and the val-
    ues they reect are described below.
    Propagation Delay—the time between the specied
    reference points. The delays provided are the worst
    case of the tphh and tpll delays for noninverting func-
    tions, tplh and tphl for inverting functions, and tphz
    and tplz for 3-state enable.
    Setup Time—the interval immediately preceding the
    transition of a clock or latch enable signal, during
    which the data must be stable to ensure it is recog-
    nized as the intended value.
    Hold Time—the interval immediately following the
    transition of a clock or latch enable signal, during
    which the data must be held stable to ensure it is rec-
    ognized as the intended value.
    3-state Enable—the time from when a TS[3:0] signal
    becomes active and the output pad reaches the high-
    impedance state.
    Estimating Power Dissipation
    OR2CxxA
    The total operating power dissipated is estimated by
    summing the standby (IDDSB), internal, and external
    power dissipated. The internal and external power is
    the power consumed in the PLCs and PICs, respec-
    tively. In general, the standby power is small and may
    be neglected. The total operating power is as follows:
    PT = Σ PPLC + Σ PPIC
    The internal operating power is made up of two parts:
    clock generation and PFU output power. The PFU out-
    put power can be estimated based upon the number of
    PFU outputs switching when driving an average fan-out
    of two:
    PPFU = 0.16 mW/MHz
    For each PFU output that switches, 0.16 mW/MHz
    needs to be multiplied times the frequency (in MHz)
    that the output switches. Generally, this can be esti-
    mated by using one-half the clock rate, multiplied by
    some activity factor; for example, 20%.
    The power dissipated by the clock generation circuitry
    is based upon four parts: the xed clock power, the
    power/clock branch row or column, the clock power dis-
    sipated in each PFU that uses this particular clock, and
    the power from the subset of those PFUs that is cong-
    ured in either of the two synchronous modes (SSPM or
    SDPM). Therefore, the clock power can be calculated
    for the four parts using the following equations:
    OR2C04A Clock Power
    P= [0.62 mW/MHz
    + (0.22 mW/MHz – Branch) (# Branches)
    + (0.022 mW/MHz – PFU) (# PFUs)
    + (0.006 mW/MHz – SMEM_PFU)
    (# SMEM_PFUs)] fCLK
    For a quick estimate, the worst-case (typical circuit)
    OR2C04A clock power ≈ 3.9 mW/MHz.
    TJ
    (°C)
    Power Supply Voltage
    3.0 V
    3.15 V
    3.3 V
    3.45 V
    3.6 V
    –40
    0.81
    0.78
    0.76
    0.74
    0.73
    0
    0.86
    0.83
    0.80
    0.77
    0.76
    25
    0.9
    0.87
    0.83
    0.8
    0.78
    85
    1.0
    0.95
    0.93
    0.88
    0.86
    100
    1.02
    0.98
    0.95
    0.91
    0.88
    125
    1.06
    1.03
    0.98
    0.95
    0.92
    相關(guān)PDF資料
    PDF描述
    OR2T04A4M84-D FPGA, 100 CLBS, 4800 GATES, PQCC84
    OR2T04A4M84I-D FPGA, 100 CLBS, 4800 GATES, PQCC84
    OR2T04A5J160-DB FPGA, 100 CLBS, 4800 GATES, PQFP160
    OR2T04A5M84-D FPGA, 100 CLBS, 4800 GATES, PQCC84
    OR2C26A3BA352I-DB FPGA, 576 CLBS, 27600 GATES, PBGA352
    相關(guān)代理商/技術(shù)參數(shù)
    參數(shù)描述
    OR2T04A-4J208 制造商:未知廠家 制造商全稱:未知廠家 功能描述:Field-Programmable Gate Arrays
    OR2T04A-4J208I 制造商:未知廠家 制造商全稱:未知廠家 功能描述:Field-Programmable Gate Arrays
    OR2T04A-4J84 制造商:未知廠家 制造商全稱:未知廠家 功能描述:Field-Programmable Gate Arrays
    OR2T04A-4J84I 制造商:未知廠家 制造商全稱:未知廠家 功能描述:Field-Programmable Gate Arrays
    OR2T04A-4M100 制造商:未知廠家 制造商全稱:未知廠家 功能描述:Field-Programmable Gate Arrays