46
2513L–AVR–03/2013
ATmega162/V
Minimizing Power
Consumption
There are several issues to consider when trying to minimize the power consumption in an AVR
controlled system. In general, sleep modes should be used as much as possible, and the sleep
mode should be selected so that as few as possible of the device’s functions are operating. All
functions not needed should be disabled. In particular, the following modules may need special
consideration when trying to achieve the lowest possible power consumption.
Analog Comparator
When entering Idle mode, the Analog Comparator should be disabled if not needed. In the other
sleep modes, the Analog Comparator is automatically disabled. However, if the Analog Compar-
ator is set up to use the Internal Voltage Reference as input, the Analog Comparator should be
disabled in all sleep modes. Otherwise, the Internal Voltage Reference will be enabled, indepen-
the Analog Comparator.
Brown-out Detector
If the Brown-out Detector is not needed in the application, this module should be turned off. If the
Brown-out Detector is enabled by the BODLEVEL Fuses, it will be enabled in all sleep modes,
and hence, always consume power. In the deeper sleep modes, this will contribute significantly
configure the Brown-out Detector.
Internal Voltage
Reference
The Internal Voltage Reference will be enabled when needed by the Brown-out Detector or the
Analog Comparator. If these modules are disabled as described in the sections above, the inter-
nal voltage reference will be disabled and it will not be consuming power. When turned on again,
the user must allow the reference to start up before the output is used. If the reference is kept on
page 52 for details on the start-up time.
Watchdog Timer
If the Watchdog Timer is not needed in the application, this module should be turned off. If the
Watchdog Timer is enabled, it will be enabled in all sleep modes, and hence, always consume
power. In the deeper sleep modes, this will contribute significantly to the total current consump-
Port Pins
When entering a sleep mode, all port pins should be configured to use minimum power. The
most important thing is to ensure that no pins drive resistive loads. In sleep modes where the I/O
clock (clk
I/O) is stopped, the input buffers of the device will be disabled. This ensures that no
power is consumed by the input logic when not needed. In some cases, the input logic is needed
for detecting wake-up conditions, and it will then be enabled. Refer to the section
“Digital Inputenabled and the input signal is left floating or have an analog signal level close to V
CC/2, the
input buffer will use excessive power.
JTAG Interface and
On-chip Debug
System
If the On-chip debug system is enabled by the OCDEN Fuse and the chip enter Power down or
Power save sleep mode, the main clock source remains enabled. In these sleep modes, this will
contribute significantly to the total current consumption. There are three alternative ways to
avoid this:
Disable OCDEN Fuse.
Disable JTAGEN Fuse.
Write one to the JTD bit in MCUCSR.
The TDO pin is left floating when the JTAG interface is enabled while the JTAG TAP controller is
not shifting data. If the hardware connected to the TDO pin does not pull up the logic level,
power consumption will increase. Note that the TDI pin for the next device in the scan chain con-
tains a pull-up that avoids this problem. Writing the JTD bit in the MCUCSR register to one or
leaving the JTAG fuse unprogrammed disables the JTAG interface.