參數(shù)資料
型號: LTC4000IUFD#TRPBF
廠商: LINEAR TECHNOLOGY CORP
元件分類: 電源管理
英文描述: 1-CHANNEL POWER SUPPLY MANAGEMENT CKT, PQCC28
封裝: 4 X 5 MM, LEAD FREE, PLASTIC, MO-220WXXX-X, QFN-28
文件頁數(shù): 17/40頁
文件大?。?/td> 428K
代理商: LTC4000IUFD#TRPBF
LTC4000
24
4000f
applicaTions inForMaTion
Figure 11. Error Amplifier Followed by Output Amplifier Driving
CC and ITH Pins
Setting the Input Voltage Monitoring Resistor Divider
The falling threshold voltage level for this monitoring
function can be calculated as follows:
RVM1 =
VVM_RST
1.193V
– 1
RVM2
where RVM1 and RVM2 form a resistor divider connected
between the monitored voltage and GND, with the center
tappointconnectedtotheVMpinasshowninFigure6.The
rising threshold voltage level can be calculated similarly.
Compensation
In order for the LTC4000 to control the external DC/DC
converter, it has to be able to overcome the sourcing bias
current of the ITH or VC pin of the DC/DC converter. The
typical sinking capability of the LTC4000 at the ITH pin is
1mA at 0.4V with a maximum voltage range of 0V to 6V.
It is imperative that the local feedback of the DC/DC
converter be set up such that during regulation of any of
the LTC4000 loops this local loop is out of regulation and
sources as much current as possible from its ITH/VC pin.
For example for a DC/DC converter regulating its output
voltage, it is recommended that the converter feedback
divider is programmed to be greater than 110% of the
outputvoltageregulationlevelprogrammedattheOFBpin.
There are four feedback loops to consider when setting up
the compensation for the LTC4000. As mentioned before
these loops are: the input current loop, the charge current
loop, the float voltage loop and the output voltage loop.
All of these loops have an error amp (A4-A7) followed by
another amplifier (A10) with the intermediate node driv-
ing the CC pin and the output of A10 driving the ITH pin
as shown in Figure 11. The most common compensation
networkofaseriescapacitor(CC)andresistor(RC)between
the CC pin and the ITH pin is shown here.
Each of the loops has slightly different dynamics due to
differencesinthefeedbacksignalpath.Theanalyticdescrip-
tion of each of the loops is included in the Appendix sec-
tion. In most situations, an alternative empirical approach
to compensation, as described here, is more practical.
CC
ITH
LTC4000
+
CC
4000 F11
RC
A4-A7
gm4-7 = 0.2m
A10
gm10 = 0.1m
+
RO4-7
RO10
Empirical Loop Compensation
Based on the five analytical expressions given in the Ap-
pendix section, and the transfer function from the ITH
pin to the input and output current of the external DC/DC
converter,theusercananalyticallydeterminethecomplete
loop transfer function of each of the loops. Once these are
obtained, it is a matter of analyzing the gain and phase
bode plots to ensure that there is enough phase and gain
margin at unity crossover with the selected values of RC
and CC for all operating conditions.
Even though it is clear that an analytical compensation
method is possible, sometimes certain complications
render this method difficult to tackle. These complica-
tions include the lack of easy availability of the switching
converter transfer function from the ITH or VC control
node to its input or output current, and the variability of
parameter values of the components such as the ESR of
the output capacitor or the RDS(ON) of the external PFETs.
Therefore a simpler and more practical way to compen-
sate the LTC4000 is provided here. This empirical method
involves injecting an AC signal into the loop, observing
the loop transient response and adjusting the CC and RC
values to quickly iterate towards the final values. Much
of the detail of this method is derived from Application
Note19whichcanbefoundatwww.linear.comusingAN19
in the search box.
Figure 12 shows the recommended setup to inject an
AC-coupled output load variation into the loop. A function
generator with 50Ω output impedance is coupled through
a 50Ω/1000F series RC network to the regulator output.
相關(guān)PDF資料
PDF描述
LTC4075XEDD 1-CHANNEL POWER SUPPLY SUPPORT CKT, PDSO10
LTC4075XEDD#PBF 1-CHANNEL POWER SUPPLY SUPPORT CKT, PDSO10
LTC4095EDC#TR 1-CHANNEL POWER SUPPLY SUPPORT CKT, PDSO8
LTC4095EDC 1-CHANNEL POWER SUPPLY SUPPORT CKT, PDSO8
LTC4095EDC#TRM 1-CHANNEL POWER SUPPLY SUPPORT CKT, PDSO8
相關(guān)代理商/技術(shù)參數(shù)
參數(shù)描述
LTC4001 制造商:LINER 制造商全稱:Linear Technology 功能描述:2A Synchronous Buck Li-Ion Charger
LTC4001-1 制造商:LINER 制造商全稱:Linear Technology 功能描述:2A Synchronous Buck Li-Ion Charger
LTC4001EUF 制造商:Linear Technology 功能描述:Battery Charger Li-Ion/Li-Pol 2000mA 4.2V 16-Pin QFN EP
LTC4001EUF#PBF 功能描述:IC CHARGER LI-ION BUCK 16-QFN RoHS:是 類別:集成電路 (IC) >> PMIC - 電池管理 系列:- 其它有關(guān)文件:STC3100 View All Specifications 特色產(chǎn)品:STC3100 - Battery Monitor IC 標準包裝:4,000 系列:- 功能:燃料,電量檢測計/監(jiān)控器 電池化學:鋰離子(Li-Ion) 電源電壓:2.7 V ~ 5.5 V 工作溫度:-40°C ~ 85°C 安裝類型:表面貼裝 封裝/外殼:8-TSSOP,8-MSOP(0.118",3.00mm 寬) 供應(yīng)商設(shè)備封裝:8-MiniSO 包裝:帶卷 (TR) 其它名稱:497-10526-2
LTC4001EUF#TRPBF 功能描述:IC CHARGER LI-ION BUCK 16-QFN RoHS:是 類別:集成電路 (IC) >> PMIC - 電池管理 系列:- 標準包裝:61 系列:- 功能:電源管理 電池化學:鋰離子(Li-Ion)、鋰聚合物(Li-Pol) 電源電壓:4.35 V ~ 5.5 V 工作溫度:-40°C ~ 85°C 安裝類型:表面貼裝 封裝/外殼:22-WFDFN 裸露焊盤 供應(yīng)商設(shè)備封裝:22-DFN(6x3)裸露焊盤 包裝:管件