參數資料
型號: LTC3829IUHF#TRPBF
廠商: LINEAR TECHNOLOGY CORP
元件分類: 穩(wěn)壓器
英文描述: SWITCHING REGULATOR, PQCC38
封裝: 5 X 7 MM, LEAD FREE, PLASTIC, M0-220WHKD, QFN-38
文件頁數: 27/40頁
文件大?。?/td> 478K
代理商: LTC3829IUHF#TRPBF
LTC3829
3829f
applicaTions inForMaTion
Efficiency Considerations
The percent efficiency of a switching regulator is equal to
the output power divided by the input power times 100%.
It is often useful to analyze individual losses to determine
what is limiting the efficiency and which change would
produce the most improvement. Percent efficiency can
be expressed as:
%Efficiency = 100% – (L1 + L2 + L3 + ...)
where L1, L2, etc. are the individual losses as a percent-
age of input power.
Although all dissipative elements in the circuit produce
losses, four main sources usually account for most of the
losses in LTC3829 circuits: 1) IC VIN current, 2) INTVCC
regulator current, 3) I2R losses, 4) topside MOSFET
transition losses.
1. The VIN current is the DC supply current given in the
ElectricalCharacteristicstable,whichexcludesMOSFET
driver and control currents. VIN current typically results
in a small (<0.1%) loss.
2. INTVCC current is the sum of the MOSFET driver and
control currents. The MOSFET driver current results
from switching the gate capacitance of the power
MOSFETs. Each time a MOSFET gate is switched from
low to high to low again, a packet of charge dQ moves
fromINTVCCtoground.TheresultingdQ/dtisacurrent
out of INTVCC that is typically much larger than the
controlcircuitcurrent.Incontinuousmode,IGATECHG=
f(QT + QB), where QT and QB are the gate charges of the
topside and bottom side MOSFETs. Supplying INTVCC
power through EXTVCCfromanoutput-derivedsource
will scale the VIN current required for the driver and
control circuits by a factor of (duty cycle)/(efficiency).
For example, in a 20V to 5V application, 10mA of
INTVCC current results in approximately 2.5mA of VIN
current. This reduces the mid-current loss from 10%
or more (if the driver was powered directly from VIN)
to only a few percent.
3. I2R losses are predicted from the DC resistances of
the fuse (if used), MOSFET, inductor and current sense
resistor.Incontinuousmode,theaverageoutputcurrent
flows through L and RSENSE, but is chopped between
the topside MOSFET and the synchronous MOSFET. If
thetwoMOSFETshaveapproximatelythesameRDS(ON),
then the resistance of one MOSFET can simply be
summed with the resistances of L and RSENSE to ob-
tain I2R losses. For example, if each RDS(ON) = 10mΩ,
RL = 10mΩ, RSENSE = 5mΩ, then the total resistance is
25mΩ. This results in losses ranging from 2% to 8%
as the output current increases from 3A to 15A for a 5V
output, or a 3% to 12% loss for a 3.3V output.
Efficiency varies as the inverse square of VOUT for the
same external components and output power level. The
combined effects of increasingly lower output voltages
andhighercurrentsrequiredbyhighperformancedigital
systemsisnotdoublingbutquadruplingtheimportance
of loss terms in the switching regulator system!
4. Transition losses apply only to the topside MOSFET(s),
and become significant only when operating at high
input voltages (typically 15V or greater). Transition
losses can be estimated from:
Transition Loss = (1.7) VIN2 IO(MAX) CRSS f
Other hidden losses such as copper trace and internal
battery resistances can account for an additional 5%
to 10% efficiency degradation in portable systems. It
is very important to include these system level losses
during the design phase. The internal battery and fuse
resistance losses can be minimized by making sure that
CIN has adequate charge storage and very low ESR at
the switching frequency. A 25W supply will typically
require a minimum of 20F to 40F of capacitance
having a maximum of 20mΩ to 50mΩ of ESR. Other
losses including Schottky conduction losses during
dead time and inductor core losses generally account
for less than 2% total additional loss.
相關PDF資料
PDF描述
LTC3851EMSE-1#TRPBF SWITCHING CONTROLLER, PDSO16
LTC3851EUD-1#TRPBF SWITCHING CONTROLLER, PQCC16
LTCEMSE-1#PBF SWITCHING CONTROLLER, PDSO16
LTC3851IUD-1#TRPBF SWITCHING CONTROLLER, PQCC16
LTC3859IUHF#TRPBF SWITCHING CONTROLLER, 900 kHz SWITCHING FREQ-MAX, PQCC38
相關代理商/技術參數
參數描述
LTC3830-1ES8 功能描述:IC REG CTRLR BUCK PWM VM 8-SOIC RoHS:否 類別:集成電路 (IC) >> PMIC - 穩(wěn)壓器 - DC DC 切換控制器 系列:- 標準包裝:2,000 系列:- PWM 型:電流模式 輸出數:1 頻率 - 最大:1MHz 占空比:50% 電源電壓:9 V ~ 10 V 降壓:無 升壓:是 回掃:是 反相:無 倍增器:無 除法器:無 Cuk:無 隔離:無 工作溫度:-40°C ~ 85°C 封裝/外殼:8-TSSOP(0.173",4.40mm 寬) 包裝:帶卷 (TR)
LTC3830-1ES8#PBF 功能描述:IC REG CTRLR BUCK PWM VM 8-SOIC RoHS:是 類別:集成電路 (IC) >> PMIC - 穩(wěn)壓器 - DC DC 切換控制器 系列:- 標準包裝:2,000 系列:- PWM 型:電流模式 輸出數:1 頻率 - 最大:1MHz 占空比:50% 電源電壓:9 V ~ 10 V 降壓:無 升壓:是 回掃:是 反相:無 倍增器:無 除法器:無 Cuk:無 隔離:無 工作溫度:-40°C ~ 85°C 封裝/外殼:8-TSSOP(0.173",4.40mm 寬) 包裝:帶卷 (TR)
LTC3830-1ES8#TR 功能描述:IC REG CTRLR BUCK PWM VM 8-SOIC RoHS:否 類別:集成電路 (IC) >> PMIC - 穩(wěn)壓器 - DC DC 切換控制器 系列:- 標準包裝:2,500 系列:- PWM 型:電流模式 輸出數:1 頻率 - 最大:500kHz 占空比:96% 電源電壓:4 V ~ 36 V 降壓:無 升壓:是 回掃:無 反相:無 倍增器:無 除法器:無 Cuk:無 隔離:無 工作溫度:-40°C ~ 125°C 封裝/外殼:24-WQFN 裸露焊盤 包裝:帶卷 (TR)
LTC3830-1ES8#TRPBF 功能描述:IC REG CTRLR BUCK PWM VM 8-SOIC RoHS:是 類別:集成電路 (IC) >> PMIC - 穩(wěn)壓器 - DC DC 切換控制器 系列:- 標準包裝:2,500 系列:- PWM 型:電流模式 輸出數:1 頻率 - 最大:500kHz 占空比:96% 電源電壓:4 V ~ 36 V 降壓:無 升壓:是 回掃:無 反相:無 倍增器:無 除法器:無 Cuk:無 隔離:無 工作溫度:-40°C ~ 125°C 封裝/外殼:24-WQFN 裸露焊盤 包裝:帶卷 (TR)
LTC3830EGN 功能描述:IC REG CTRLR BUCK PWM VM 16-SSOP RoHS:否 類別:集成電路 (IC) >> PMIC - 穩(wěn)壓器 - DC DC 切換控制器 系列:- 標準包裝:4,500 系列:PowerWise® PWM 型:控制器 輸出數:1 頻率 - 最大:1MHz 占空比:95% 電源電壓:2.8 V ~ 5.5 V 降壓:是 升壓:無 回掃:無 反相:無 倍增器:無 除法器:無 Cuk:無 隔離:無 工作溫度:-40°C ~ 125°C 封裝/外殼:6-WDFN 裸露焊盤 包裝:帶卷 (TR) 配用:LM1771EVAL-ND - BOARD EVALUATION LM1771 其它名稱:LM1771SSDX