參數(shù)資料
型號: LTC1871-7
廠商: Linear Technology Corporation
英文描述: Quadruple 2-Input Positive-AND Gate 14-SOIC -40 to 85
中文描述: 2相升壓型DC / DC控制器
文件頁數(shù): 20/36頁
文件大?。?/td> 411K
代理商: LTC1871-7
20
LTC1871
resistor value would be 10m
, and the power dissi-
pated in this resistor would be 514mW at maximum
output current. Assuming an efficiency of 90%, this
sense resistor power dissipation represents 1.3% of
the overall input power. In other words, for this appli-
cation, the use of V
DS
sensing would increase the
efficiency by approximately 1.3%.
For more details regarding the various terms in these
equations, please refer to the section Boost Converter:
Power MOSFET Selection.
3. The losses in the inductor are simply the DC input
current squared times the winding resistance. Express-
ing this loss as a function of the output current yields:
P
I
D
R
R WINDING
(
O MAX
(
1
MAX
W
)
)
=
2
4. Losses in the boost diode. The power dissipation in the
boost diode is:
P
DIODE
= I
O(MAX)
V
D
The boost diode can be a major source of power loss in
a boost converter. For the 3.3V input, 5V output at 7A
example given above, a Schottky diode with a 0.4V
forward voltage would dissipate 2.8W, which repre-
sents 7% of the input power. Diode losses can become
significant at low output voltages where the forward
voltage is a significant percentage of the output voltage.
5. Other losses, including C
IN
and C
O
ESR dissipation and
inductor core losses, generally account for less than
2% of the total additional loss.
Checking Transient Response
The regulator loop response can be verified by looking at
the load transient response. Switching regulators gener-
ally take several cycles to respond to an instantaneous
step in resistive load current. When the load step occurs,
V
O
immediately shifts by an amount equal to (
I
LOAD
)(ESR),
and then C
O
begins to charge or discharge (depending on
the direction of the load step) as shown in Figure 13. The
regulator feedback loop acts on the resulting error amp
output signal to return V
O
to its steady-state value. During
this recovery time, V
O
can be monitored for overshoot or
ringing that would indicate a stability problem.
A second, more severe transient can occur when connect-
ing loads with large (>1
μ
F) supply bypass capacitors. The
discharged bypass capacitors are effectively put in parallel
with C
O
, causing a nearly instantaneous drop in V
O
. No
regulator can deliver enough current to prevent this prob-
lem if the load switch resistance is low and it is driven
quickly. The only solution is to limit the rise time of the
switch drive in order to limit the inrush current di/dt to the
load.
Boost Converter Design Example
The design example given here will be for the circuit shown
in Figure 1. The input voltage is 3.3V, and the output is 5V
at a maximum load current of 7A (10A peak).
1. The duty cycle is:
D
V
V
V
V
V
O
D
+
IN
O
D
=
+
=
=
. – .
.
5 0 4
5 0 4 3 3
38. %
2. Pulse-skip operation is chosen so the MODE/SYNC pin
is shorted to INTV
CC
.
3. The operating frequency is chosen to be 300kHz to
reduce the size of the inductor. From Figure 5, the
resistor from the FREQ pin to ground is 80k.
4. An inductor ripple current of 40% of the maximum load
current is chosen, so the peak input current (which is
also the minimum saturation current) is:
I
D
MAX
2
1
I
A
IN PEAK
(
O MAX
(
)
)
1.
– .
1 0 39
.
=
+
=
=
1
7
138
χ
APPLICATIOU
W
U
U
I
2A/DIV
V
(AC)
100mV/DIV
Figure 13. Load Transient Response for a 3.3V Input,
5V Output Boost Converter Application, 0.7A to 7A Step
V
IN
= 3.3V
V
= 5V
MODE/SYNC = INTV
CC
(PULSE-SKIP MODE)
100
μ
s/DIV
1871 F13
相關(guān)PDF資料
PDF描述
LTC1871EMS Quadruple 2-Input Positive-AND Gate 14-SO -40 to 85
LTC1873EG Quadruple 2-Input Positive-AND Gate 14-TSSOP -40 to 85
LTC1873 Dual 550kHz Synchronous 2-Phase Switching Regulator Controller with 5-Bit VID(550kHz,雙 路,同步2相開關(guān)穩(wěn)壓器(帶5位VID))
LTC1874 Dual Constant Frequency Current Mode Step-Down DC/DC Controller(雙路(3.3V,1.8V輸出)恒定頻率,電流模式,步降DC/DC控制器)
LTC1874EGN Quadruple 2-Input Positive-AND Gate 14-VQFN -40 to 85
相關(guān)代理商/技術(shù)參數(shù)
參數(shù)描述
LTC1871EMS 功能描述:IC REG CTRLR BST FLYBK CM 10MSOP RoHS:否 類別:集成電路 (IC) >> PMIC - 穩(wěn)壓器 - DC DC 切換控制器 系列:- 標準包裝:2,500 系列:- PWM 型:電流模式 輸出數(shù):1 頻率 - 最大:500kHz 占空比:96% 電源電壓:4 V ~ 36 V 降壓:無 升壓:是 回掃:無 反相:無 倍增器:無 除法器:無 Cuk:無 隔離:無 工作溫度:-40°C ~ 125°C 封裝/外殼:24-WQFN 裸露焊盤 包裝:帶卷 (TR)
LTC1871EMS#PBF 功能描述:IC REG CTRLR BST FLYBK CM 10MSOP RoHS:是 類別:集成電路 (IC) >> PMIC - 穩(wěn)壓器 - DC DC 切換控制器 系列:- 特色產(chǎn)品:LM3753/54 Scalable 2-Phase Synchronous Buck Controllers 標準包裝:1 系列:PowerWise® PWM 型:電壓模式 輸出數(shù):1 頻率 - 最大:1MHz 占空比:81% 電源電壓:4.5 V ~ 18 V 降壓:是 升壓:無 回掃:無 反相:無 倍增器:無 除法器:無 Cuk:無 隔離:無 工作溫度:-5°C ~ 125°C 封裝/外殼:32-WFQFN 裸露焊盤 包裝:Digi-Reel® 產(chǎn)品目錄頁面:1303 (CN2011-ZH PDF) 其它名稱:LM3754SQDKR
LTC1871EMS#TR 功能描述:IC REG CTRLR BST FLYBK CM 10MSOP RoHS:否 類別:集成電路 (IC) >> PMIC - 穩(wěn)壓器 - DC DC 切換控制器 系列:- 標準包裝:2,500 系列:- PWM 型:電流模式 輸出數(shù):1 頻率 - 最大:500kHz 占空比:96% 電源電壓:4 V ~ 36 V 降壓:無 升壓:是 回掃:無 反相:無 倍增器:無 除法器:無 Cuk:無 隔離:無 工作溫度:-40°C ~ 125°C 封裝/外殼:24-WQFN 裸露焊盤 包裝:帶卷 (TR)
LTC1871EMS#TRPBF 功能描述:IC REG CTRLR BST FLYBK CM 10MSOP RoHS:是 類別:集成電路 (IC) >> PMIC - 穩(wěn)壓器 - DC DC 切換控制器 系列:- 標準包裝:2,500 系列:- PWM 型:電流模式 輸出數(shù):1 頻率 - 最大:500kHz 占空比:96% 電源電壓:4 V ~ 36 V 降壓:無 升壓:是 回掃:無 反相:無 倍增器:無 除法器:無 Cuk:無 隔離:無 工作溫度:-40°C ~ 125°C 封裝/外殼:24-WQFN 裸露焊盤 包裝:帶卷 (TR)
LTC1871EMS-1#PBF 功能描述:IC REG CTRLR BST FLYBK CM 10MSOP RoHS:是 類別:集成電路 (IC) >> PMIC - 穩(wěn)壓器 - DC DC 切換控制器 系列:- 標準包裝:2,500 系列:- PWM 型:電流模式 輸出數(shù):1 頻率 - 最大:500kHz 占空比:96% 電源電壓:4 V ~ 36 V 降壓:無 升壓:是 回掃:無 反相:無 倍增器:無 除法器:無 Cuk:無 隔離:無 工作溫度:-40°C ~ 125°C 封裝/外殼:24-WQFN 裸露焊盤 包裝:帶卷 (TR)