參數(shù)資料
型號(hào): LTC1751EMS8-5
英文描述: Analog IC
中文描述: 模擬IC
文件頁(yè)數(shù): 10/12頁(yè)
文件大?。?/td> 178K
代理商: LTC1751EMS8-5
7
LTC1701/LTC1701B
Input Capacitor (CIN) Selection
In continuous mode, the input current of the converter is
a square wave with a duty cycle of approximately VOUT/
VIN. To prevent large voltage transients, a low equivalent
series resistance (ESR) input capacitor sized for the maxi-
mum RMS current must be used. The maximum RMS
capacitor current is given by:
II
VV
V
RMS
MAX
OUT
IN
OUT
IN
()
where the maximum average output current IMAX equals
the peak current (1 Amp) minus half the peak-to-peak
ripple current, IMAX = 1 – IL/2.
This formula has a maximum at VIN = 2VOUT, where IRMS
= IOUT/2. This simple worst-case is commonly used to
design because even significant deviations do not offer
much relief. Note that capacitor manufacturer’s ripple
current ratings are often based on only 2000 hours life-
time. This makes it advisable to further derate the capaci-
tor, or choose a capacitor rated at a higher temperature
than required. Several capacitors may also be paralleled to
meet the size or height requirements of the design. An
additional 0.1
F to 1F ceramic capacitor is also recom-
mended on VIN for high frequency decoupling.
Output Capacitor (COUT) Selection
The selection of COUT is driven by the required ESR.
Typically, once the ESR requirement is satisfied, the
capacitance is adequate for filtering. The output ripple
(
VOUT) is determined by:
+
V
I ESR
fC
OUT
L
OUT
1
8
where f = operating frequency, COUT = output capacitance
and
IL = ripple current in the inductor. With IL = 0.4
IOUT(MAX) the output ripple will be less than 100mV with:
ESRCOUT < 100m
Once the ESR requirements for COUT have been met, the
RMS current rating generally far exceeds the IRIPPLE(P-P)
requirement.
When the capacitance of COUT is made too small, the
output ripple at low frequencies will be large enough to trip
the ITH comparator. This causes Burst Mode operation to
be activated when the LTC1701 would normally be in
continuous mode operation. The effect can be improved at
higher frequencies with lower inductor values.
In surface mount applications, multiple capacitors may
have to be paralleled to meet the capacitance, ESR or RMS
current handling requirement of the application. Alumi-
num electrolyte and dry tantulum capacitors are both
available in surface mount configurations. In the case of
tantalum, it is critical that the capacitors are surge tested
for use in switching power supplies. An excellent choice is
the AVX TPS, AVX TPSV and KEMET T510 series of
surface mount tantalums, avalable in case heights ranging
from 2mm to 4mm. Other capacitor types include Nichicon
PL series, Sanyo POSCAP and Panasonic SP.
Ceramic Capacitors
Higher value, lower cost ceramic capacitors are now
becoming available in smaller case sizes. These are tempt-
ing for switching regulator use because of their very low
ESR. Unfortunately, the ESR is so low that it can cause
loop stability problems. Solid tantalum capacitor ESR
generates a loop “zero” at 5kHz to 50kHz that is instrumen-
tal in giving acceptable loop phase margin. Ceramic ca-
pacitors remain capacitive to beyond 300kHz and usually
resonate with their ESL before ESR becomes effective.
Also, ceramic caps are prone to temperature effects which
requires the designer to check loop stability over the
operating temperature range.
For these reasons, most of the input and output capaci-
tance should be composed of tantalum capacitors for
stability combined with about 0.1
F to 1F of ceramic
capacitors for high frequency decoupling. Great care must
be taken when using only ceramic input and output capaci-
tors. The OPTI-LOOP compensation allows transient re-
sponse to be optimized for all types of output capacitors,
including low ESR ceramics.
Setting the Output Voltage
The LTC1701 develops a 1.25V reference voltage between
the feedback pin, VFB, and the signal ground as shown in
APPLICATIO S I FOR ATIO
WU
U
相關(guān)PDF資料
PDF描述
LTC1757-1CMS8 AMP POWER CONTROLLER
LTC1757-2CMS8 Industrial Control IC
LTC1798CS8 Voltage Reference
LTC1798CS8-2.5 Voltage Reference
LTC1864AIS8 A/D CONVERTER
相關(guān)代理商/技術(shù)參數(shù)
參數(shù)描述
LTC1751EMS8-5#PBF 功能描述:IC REG SWITCHED CAP DBL 5V 8MSOP RoHS:是 類別:集成電路 (IC) >> PMIC - 穩(wěn)壓器 - DC DC 開關(guān)穩(wěn)壓器 系列:- 標(biāo)準(zhǔn)包裝:250 系列:- 類型:降壓(降壓) 輸出類型:固定 輸出數(shù):1 輸出電壓:1.2V 輸入電壓:2.05 V ~ 6 V PWM 型:電壓模式 頻率 - 開關(guān):2MHz 電流 - 輸出:500mA 同步整流器:是 工作溫度:-40°C ~ 85°C 安裝類型:表面貼裝 封裝/外殼:6-UFDFN 包裝:帶卷 (TR) 供應(yīng)商設(shè)備封裝:6-SON(1.45x1) 產(chǎn)品目錄頁(yè)面:1032 (CN2011-ZH PDF) 其它名稱:296-25628-2
LTC1751EMS8-5#TR 功能描述:IC REG SWITCHED CAP DBL 5V 8MSOP RoHS:否 類別:集成電路 (IC) >> PMIC - 穩(wěn)壓器 - DC DC 開關(guān)穩(wěn)壓器 系列:- 標(biāo)準(zhǔn)包裝:2,500 系列:- 類型:升壓(升壓) 輸出類型:可調(diào)式 輸出數(shù):1 輸出電壓:1.24 V ~ 30 V 輸入電壓:1.5 V ~ 12 V PWM 型:電流模式,混合 頻率 - 開關(guān):600kHz 電流 - 輸出:500mA 同步整流器:無(wú) 工作溫度:-40°C ~ 85°C 安裝類型:表面貼裝 封裝/外殼:8-SOIC(0.154",3.90mm 寬) 包裝:帶卷 (TR) 供應(yīng)商設(shè)備封裝:8-SOIC
LTC1751EMS8-5#TRPBF 功能描述:IC REG SWITCHED CAP DBL 5V 8MSOP RoHS:是 類別:集成電路 (IC) >> PMIC - 穩(wěn)壓器 - DC DC 開關(guān)穩(wěn)壓器 系列:- 標(biāo)準(zhǔn)包裝:2,500 系列:- 類型:升壓(升壓) 輸出類型:可調(diào)式 輸出數(shù):1 輸出電壓:1.24 V ~ 30 V 輸入電壓:1.5 V ~ 12 V PWM 型:電流模式,混合 頻率 - 開關(guān):600kHz 電流 - 輸出:500mA 同步整流器:無(wú) 工作溫度:-40°C ~ 85°C 安裝類型:表面貼裝 封裝/外殼:8-SOIC(0.154",3.90mm 寬) 包裝:帶卷 (TR) 供應(yīng)商設(shè)備封裝:8-SOIC
LTC1753CG 功能描述:IC SW REG CNTRLR PENT III 20SSOP RoHS:否 類別:集成電路 (IC) >> PMIC - 穩(wěn)壓器 - 專用型 系列:- 標(biāo)準(zhǔn)包裝:43 系列:- 應(yīng)用:控制器,Intel VR11 輸入電壓:5 V ~ 12 V 輸出數(shù):1 輸出電壓:0.5 V ~ 1.6 V 工作溫度:-40°C ~ 85°C 安裝類型:表面貼裝 封裝/外殼:48-VFQFN 裸露焊盤 供應(yīng)商設(shè)備封裝:48-QFN(7x7) 包裝:管件
LTC1753CG#PBF 功能描述:IC SW REG CNTRLR PENT III 20SSOP RoHS:是 類別:集成電路 (IC) >> PMIC - 穩(wěn)壓器 - 專用型 系列:- 標(biāo)準(zhǔn)包裝:2,000 系列:- 應(yīng)用:控制器,DSP 輸入電壓:4.5 V ~ 25 V 輸出數(shù):2 輸出電壓:最低可調(diào)至 1.2V 工作溫度:-40°C ~ 85°C 安裝類型:表面貼裝 封裝/外殼:30-TFSOP(0.173",4.40mm 寬) 供應(yīng)商設(shè)備封裝:30-TSSOP 包裝:帶卷 (TR)