參數(shù)資料
型號(hào): LTC1735IS-1#TRPBF
廠商: LINEAR TECHNOLOGY CORP
元件分類(lèi): 穩(wěn)壓器
英文描述: 3 A SWITCHING CONTROLLER, 550 kHz SWITCHING FREQ-MAX, PDSO16
封裝: 0.150 INCH, PLASTIC, SO-16
文件頁(yè)數(shù): 4/28頁(yè)
文件大?。?/td> 343K
代理商: LTC1735IS-1#TRPBF
12
LTC1735-1
APPLICATIO S I FOR ATIO
WU
U
Inductor Core Selection
Once the value for L is known, the type of inductor must be
selected. High efficiency converters generally cannot afford
the core loss found in low cost powdered iron cores,
forcing the use of more expensive ferrite, molypermalloy,
or Kool M
cores. Actual core loss is independent of core
size for a fixed inductor value, but it is very dependent on
inductance selected. As inductance increases, core losses
go down. Unfortunately, increased inductance requires
more turns of wire and therefore copper losses will increase.
Ferrite designs have very low core loss and are preferred
at high switching frequencies, so design goals can
concentrate on copper loss and preventing saturation.
Ferrite core material saturates “hard,” which means that
inductance collapses abruptly when the peak design current
is exceeded. This results in an abrupt increase in inductor
ripple current and consequent output voltage ripple. Do
not allow the core to saturate!
Molypermalloy (from Magnetics, Inc.) is a very good, low
loss core material for toroids, but it is more expensive than
ferrite. A reasonable compromise from the same
manufacturer is Kool M
. Toroids are very space efficient,
especially when you can use several layers of wire. Because
they generally lack a bobbin, mounting is more difficult.
However, designs for surface mount are available that do
not increase the height significantly.
Power MOSFET and D1 Selection
Two external power MOSFETs must be selected for use
with the LTC1735-1: an N-channel MOSFET for the top
(main) switch, and an N-channel MOSFET for the bottom
(synchronous) switch.
The peak-to-peak gate drive levels are set by the INTVCC
voltage. This voltage is typically 5.2V during start-up (see
EXTVCC Pin Connection). Consequently, logic-level
threshold MOSFETs must be used in most LTC1735-1
applications. The only exception is when low input voltage
is expected (VIN < 5V); then, sub-logic level threshold
MOSFETs (VGS(TH) < 3V) should be used. Pay close
attention to the BVDSS specification for the MOSFETs as
well; most of the logic level MOSFETs are limited to 30V or
less.
Selection criteria for the power MOSFETs include the “ON”
resistance RDS(ON), reverse transfer capacitance CRSS,
input voltage and maximum output current. When the
LTC1735-1 is operating in continuous mode the duty
cycles for the top and bottom MOSFETs are given by:
Main Switch Duty Cycle
V
Synchronous Switch Duty Cycle
VV
V
OUT
IN
OUT
IN
=
The MOSFET power dissipations at maximum output
current are given by:
P
V
IR
kV
I
C
f
P
VV
V
IR
MAIN
OUT
IN
MAX
DS ON
IN
MAX
RSS
SYNC
IN
OUT
IN
MAX
DS ON
=
() +
()
+
() ( )(
)( )
=
() +
()
2
1
δ
()
where
δ is the temperature dependency of RDS(ON) and k
is a constant inversely related to the gate drive current.
Both MOSFETs have I2R losses while the topside
N-channel equation includes an additional term for transi-
tion losses, which are highest at high input voltages. For
VIN < 20V the high current efficiency generally improves
with larger MOSFETs, while for VIN > 20V the transition
losses rapidly increase to the point that the use of a higher
RDS(ON) device with lower CRSS actually provides higher
efficiency. The synchronous MOSFET losses are greatest
at high input voltage or during a short circuit when the duty
cycle in this switch is nearly 100%.
The term (1 +
δ) is generally given for a MOSFET in the
form of a normalized RDS(ON) vs Temperature curve, but
δ = 0.005/°C can be used as an approximation for low
voltage MOSFETs. CRSS is usually specified in the
MOSFET characteristics. The constant k = 1.7 can be used
to estimate the contributions of the two terms in the main
switch dissipation equation.
The Schottky diode D1 shown in Figure 1 conducts during
the dead-time between the conduction of the two power
MOSFETs. This prevents the body diode of the bottom
Kool M
is a registered trademark of Magnetics, Inc.
相關(guān)PDF資料
PDF描述
LTC2951IDDB-1#TRMPBF 1-CHANNEL POWER SUPPLY SUPPORT CKT, PDSO8
LTC3105EDD#PBF SWITCHING REGULATOR, PDSO10
LTC3105EMS#PBF SWITCHING REGULATOR, PDSO12
LTC3105EMS#TRPBF SWITCHING REGULATOR, PDSO12
LTC3240EDC-3.3 0.45 A SWITCHED CAPACITOR REGULATOR, 1800 kHz SWITCHING FREQ-MAX, PDSO6
相關(guān)代理商/技術(shù)參數(shù)
參數(shù)描述
LTC1736CG 功能描述:IC SW REG STEP-DOWN SYNC 24-SSOP RoHS:否 類(lèi)別:集成電路 (IC) >> PMIC - 穩(wěn)壓器 - 專用型 系列:- 標(biāo)準(zhǔn)包裝:43 系列:- 應(yīng)用:控制器,Intel VR11 輸入電壓:5 V ~ 12 V 輸出數(shù):1 輸出電壓:0.5 V ~ 1.6 V 工作溫度:-40°C ~ 85°C 安裝類(lèi)型:表面貼裝 封裝/外殼:48-VFQFN 裸露焊盤(pán) 供應(yīng)商設(shè)備封裝:48-QFN(7x7) 包裝:管件
LTC1736CG#PBF 功能描述:IC SW REG STEP-DONW SYNC 24-SSOP RoHS:是 類(lèi)別:集成電路 (IC) >> PMIC - 穩(wěn)壓器 - 專用型 系列:- 標(biāo)準(zhǔn)包裝:43 系列:- 應(yīng)用:控制器,Intel VR11 輸入電壓:5 V ~ 12 V 輸出數(shù):1 輸出電壓:0.5 V ~ 1.6 V 工作溫度:-40°C ~ 85°C 安裝類(lèi)型:表面貼裝 封裝/外殼:48-VFQFN 裸露焊盤(pán) 供應(yīng)商設(shè)備封裝:48-QFN(7x7) 包裝:管件
LTC1736CG#TR 功能描述:IC REG SW SYNC STEPDWN HE 24SSOP RoHS:否 類(lèi)別:集成電路 (IC) >> PMIC - 穩(wěn)壓器 - 專用型 系列:- 標(biāo)準(zhǔn)包裝:43 系列:- 應(yīng)用:控制器,Intel VR11 輸入電壓:5 V ~ 12 V 輸出數(shù):1 輸出電壓:0.5 V ~ 1.6 V 工作溫度:-40°C ~ 85°C 安裝類(lèi)型:表面貼裝 封裝/外殼:48-VFQFN 裸露焊盤(pán) 供應(yīng)商設(shè)備封裝:48-QFN(7x7) 包裝:管件
LTC1736CG#TRPBF 功能描述:IC SW REG STEP-DONW SYNC 24-SSOP RoHS:是 類(lèi)別:集成電路 (IC) >> PMIC - 穩(wěn)壓器 - 專用型 系列:- 標(biāo)準(zhǔn)包裝:43 系列:- 應(yīng)用:控制器,Intel VR11 輸入電壓:5 V ~ 12 V 輸出數(shù):1 輸出電壓:0.5 V ~ 1.6 V 工作溫度:-40°C ~ 85°C 安裝類(lèi)型:表面貼裝 封裝/外殼:48-VFQFN 裸露焊盤(pán) 供應(yīng)商設(shè)備封裝:48-QFN(7x7) 包裝:管件
LTC1736IG 功能描述:IC REG SW SYNC STEPDWN HE 24SSOP RoHS:否 類(lèi)別:集成電路 (IC) >> PMIC - 穩(wěn)壓器 - 專用型 系列:- 標(biāo)準(zhǔn)包裝:43 系列:- 應(yīng)用:控制器,Intel VR11 輸入電壓:5 V ~ 12 V 輸出數(shù):1 輸出電壓:0.5 V ~ 1.6 V 工作溫度:-40°C ~ 85°C 安裝類(lèi)型:表面貼裝 封裝/外殼:48-VFQFN 裸露焊盤(pán) 供應(yīng)商設(shè)備封裝:48-QFN(7x7) 包裝:管件