ICS1574B
10
Table 1 — "A" & "M" Divider Programming
Feedback Divider Modulus Table
Notes: To use this table, find the desired modulus in the table. Follow the column up to find the A divider programming values. Follow the
row to the left to find the M divider programming. Some feedback divisors can be achieved with two or three combinations of divider settings.
Any are acceptable for use.
The formula for the effective feedback modulus is:
N =[(M +1) 6] +A
except when A=0, then:
N=(M +1) 7
Under all circumstances:
A
≤ M
-
]
0
[
A
.
]
2
[
A1
0
00
1
01
1
00
0
11
0
10
1
11
1
10
0
0-
]
0
[
A
.
]
2
[
A1
0
00
1
01
1
00
0
11
0
10
1
11
1
10
0
]
0
[
M
.
]
5
[
M]
0
[
M
.
]
5
[
M
0
07
0
19
9
10
0
21
0
22
0
23
0
24
0
25
0
21
3
2
1
0
03
14
11
0
15
0
26
0
27
0
28
0
29
0
20
1
21
1
28
3
2
0
1
0
09
10
21
20
1
0
11
1
22
1
23
1
24
1
25
1
26
1
27
1
25
4
2
1
0
05
26
27
28
21
1
0
17
1
28
1
29
1
20
2
21
2
22
2
23
2
22
5
2
0
1
0
01
32
33
34
35
30
0
1
0
13
2
24
2
25
2
26
2
27
2
28
2
29
2
29
5
2
1
0
1
0
07
38
39
30
41
42
41
0
1
0
19
2
20
3
21
3
22
3
23
3
24
3
25
3
26
6
2
0
1
0
03
44
45
46
47
48
49
40
1
0
15
3
26
3
27
3
28
3
29
3
20
4
21
4
23
7
2
1
0
09
40
51
52
53
54
55
56
51
1
0
11
4
22
4
23
4
24
4
25
4
26
4
27
4
20
8
2
0
1
0
05
56
57
58
59
50
61
63
60
0
1
0
17
4
28
4
29
4
20
5
21
5
22
5
23
5
27
8
2
1
0
1
0
01
62
63
64
65
66
67
60
71
0
1
0
13
5
24
5
25
5
26
5
27
5
28
5
29
5
24
9
2
0
1
0
1
0
07
68
69
60
71
72
73
77
70
1
0
1
0
19
5
20
6
21
6
22
6
23
6
24
6
25
6
21
0
3
1
0
1
0
03
74
75
76
77
78
79
74
81
1
0
1
0
15
6
26
6
27
6
28
6
29
6
20
7
21
7
28
0
3
0
1
0
09
70
81
82
83
84
85
81
90
0
1
0
11
7
22
7
23
7
24
7
25
7
26
7
27
7
25
1
3
1
0
1
0
05
86
87
88
89
80
91
98
91
0
1
0
17
7
28
7
29
7
20
8
21
8
22
8
23
8
22
2
3
0
1
0
01
92
93
94
95
96
97
95
0
10
1
0
13
8
24
8
25
8
26
8
27
8
28
8
29
8
29
2
3
1
0
07
98
99
90
0
11
0
12
0
13
0
12
1
11
1
0
19
8
20
9
21
9
22
9
23
9
24
9
25
9
26
3
0
1
03
0
14
0
15
0
16
0
17
0
18
0
19
0
19
1
10
0
1
15
9
26
9
27
9
28
9
29
9
20
0
31
0
33
4
3
1
0
1
09
0
10
1
11
1
12
1
13
1
14
1
15
1
16
2
11
0
1
11
0
32
0
33
0
34
0
35
0
36
0
37
0
30
5
3
0
1
0
1
05
1
16
1
17
1
18
1
19
1
10
2
11
2
13
3
10
1
0
1
17
0
38
0
39
0
30
1
31
1
32
1
33
1
37
5
3
1
0
1
01
2
12
2
13
2
14
2
15
2
16
2
17
2
10
4
11
1
0
1
13
1
34
1
35
1
36
1
37
1
38
1
39
1
34
6
3
0
1
0
1
07
2
18
2
19
2
10
3
11
3
12
3
13
3
17
4
10
0
1
0
1
19
1
30
2
31
2
32
2
33
2
34
2
35
2
31
7
3
1
0
1
0
1
03
3
14
3
15
3
16
3
17
3
18
3
19
3
14
5
11
0
1
0
1
15
2
36
2
37
2
38
2
39
2
30
3
31
3
38
7
3
0
1
0
1
09
3
10
4
11
4
12
4
13
4
14
4
15
4
11
6
10
1
0
1
11
3
32
3
33
3
34
3
35
3
36
3
37
3
35
8
3
1
0
1
05
4
16
4
17
4
18
4
19
4
10
5
11
5
18
6
11
1
0
1
17
3
38
3
39
3
30
4
31
4
32
4
33
4
32
9
3
0
1
01
5
12
5
13
5
14
5
15
5
16
5
17
5
15
7
10
0
1
13
4
34
4
35
4
36
4
37
4
38
4
39
4
39
9
3
1
0
1
07
5
18
5
19
5
10
6
11
6
12
6
13
6
12
8
11
0
1
19
4
30
5
31
5
32
5
33
5
34
5
35
5
36
0
4
0
1
0
1
03
6
14
6
15
6
16
6
17
6
18
6
19
6
19
8
10
1
0
1
15
5
36
5
37
5
38
5
39
5
30
6
31
6
33
1
4
1
0
1
09
6
10
7
11
7
12
7
13
7
14
7
15
7
16
9
11
1
0
1
11
6
32
6
33
6
34
6
35
6
36
6
37
6
30
2
4
0
1
05
7
16
7
17
7
18
7
19
7
10
8
11
8
13
0
20
0
1
17
6
38
6
39
6
30
7
31
7
32
7
33
7
37
2
4
1
0
1
01
8
12
8
13
8
14
8
15
8
16
8
17
8
10
1
21
0
1
13
7
34
7
35
7
36
7
37
7
38
7
39
7
34
3
4
0
1
07
8
18
8
19
8
10
9
11
9
12
9
13
9
17
1
20
1
19
7
30
8
31
8
32
8
33
8
34
8
35
8
31
4
1
03
9
14
9
15
9
16
9
17
9
18
9
19
9
14
2
21
1
15
8
36
8
37
8
38
8
39
8
30
9
31
9
38
4