參數(shù)資料
型號(hào): HGTP11N120CN
廠商: INTERSIL CORP
元件分類: IGBT 晶體管
英文描述: 43A, 1200V, NPT Series N-Channel IGBT(43A, 1200V NPT系列N溝道絕緣柵雙極型晶體管)
中文描述: 43 A, 1200 V, N-CHANNEL IGBT
封裝: TO-220AB ALTERNATE VERSION, 3 PIN
文件頁數(shù): 7/7頁
文件大小: 81K
代理商: HGTP11N120CN
7
All Intersil semiconductor products are manufactured, assembled and tested under
ISO9000
quality systems certification.
Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time with-
out notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.
For information regarding Intersil Corporation and its products, see web site
www.intersil.com
Handling Precautions for IGBTs
Insulated Gate Bipolar Transistors are susceptible to
gate-insulation damage by the electrostatic discharge of
energy through the devices. When handling these devices,
care should be exercised to assure that the static charge
built in the handler’s body capacitance is not discharged
through the device. With proper handling and application
procedures, however, IGBTs are currently being extensively
used in production by numerous equipment manufacturers in
military, industrial and consumer applications, with virtually
no damage problems due to electrostatic discharge. IGBTs
can be handled safely if the following basic precautions are
taken:
1. Prior to assembly into a circuit, all leads should be kept
shorted together either by the use of metal shorting
springs or by the insertion into conductive material such
as “ECCOSORBD LD26” or equivalent.
2. When devices are removed by hand from their carriers,
the hand being used should be grounded by any suitable
means - for example, with a metallic wristband.
3. Tips of soldering irons should be grounded.
4. Devices should never be inserted into or removed from
circuits with power on.
5.
Gate Voltage Rating
- Never exceed the gate-voltage
rating of V
GEM
. Exceeding the rated V
GE
can result in
permanent damage to the oxide layer in the gate region.
6.
Gate Termination
- The gates of these devices are
essentially capacitors. Circuits that leave the gate
open-circuited or floating should be avoided. These
conditions can result in turn-on of the device due to
voltage buildup on the input capacitor due to leakage
currents or pickup.
7.
Gate Protection
- These devices do not have an internal
monolithic Zener diode from gate to emitter. If gate
protection is required an external Zener is recommended.
Operating Frequency Information
Operating frequency information for a typical device
(Figure 3) is presented as a guide for estimating device
performance for a specific application. Other typical
frequency vs collector current (I
CE
) plots are possible using
the information shown for a typical unit in Figures 5, 6, 7, 8, 9
and 11. The operating frequency plot (Figure 3) of a typical
device shows f
MAX1
or f
MAX2
; whichever is smaller at each
point. The information is based on measurements of a
typical device and is bounded by the maximum rated
junction temperature.
f
MAX1
is defined by f
MAX1
= 0.05/(t
d(OFF)I
+ t
d(ON)I
).
Deadtime (the denominator) has been arbitrarily held to 10%
of the on-state time for a 50% duty factor. Other definitions
are possible. t
d(OFF)I
and t
d(ON)I
are defined in Figure 19.
Device turn-off delay can establish an additional frequency
limiting condition for an application other than T
JM
. t
d(OFF)I
is important when controlling output ripple under a lightly
loaded condition.
f
MAX2
is defined by f
MAX2
= (P
D
- P
C
)/(E
OFF
+ E
ON2
). The
allowable dissipation (P
D
) is defined by P
D
= (T
JM
- T
C
)/R
θ
JC
.
The sum of device switching and conduction losses must
not exceed P
D
. A 50% duty factor was used (Figure 3) and
the conduction losses (P
C
) are approximated by
P
C
= (V
CE
x I
CE
)/2.
E
ON2
and E
OFF
are defined in the switching waveforms
shown in Figure 19. E
ON2
is the integral of the
instantaneous power loss (I
CE
x V
CE
) during turn-on and
E
OFF
is the integral of the instantaneous power loss
(I
CE
x V
CE
) during turn-off. All tail losses are included in the
calculation for E
OFF
; i.e., the collector current equals zero
(I
CE
= 0).
HGTG11N120CN, HGTP11N120CN, HGT1S11N120CNS
ECCOSORBD is a Trademark of Emerson and Cumming, Inc.
相關(guān)PDF資料
PDF描述
HGTG11N120CN 43A, 1200V, NPT Series N-Channel IGBT
HGTG11N120CND 43A, 1200V, NPT Series N-Channel IGBT with Anti-Parallel Hyperfast Diode
HGT1S11N120CNS 43A, 1200V, NPT Series N-Channel IGBT(43A, 1200V NPT系列N溝道絕緣柵雙極型晶體管)
HGTG11N120CN 43A, 1200V, NPT Series N-Channel IGBT
HGTG11N120CND 43A, 1200V, NPT Series N-Channel IGBT with Anti-Parallel Hyperfast Diode
相關(guān)代理商/技術(shù)參數(shù)
參數(shù)描述
HGTP12N6001 制造商:Rochester Electronics LLC 功能描述:- Bulk 制造商:Harris Corporation 功能描述:
HGTP12N60A4 功能描述:IGBT 晶體管 600V N-Channel IGBT SMPS Series RoHS:否 制造商:Fairchild Semiconductor 配置: 集電極—發(fā)射極最大電壓 VCEO:650 V 集電極—射極飽和電壓:2.3 V 柵極/發(fā)射極最大電壓:20 V 在25 C的連續(xù)集電極電流:150 A 柵極—射極漏泄電流:400 nA 功率耗散:187 W 最大工作溫度: 封裝 / 箱體:TO-247 封裝:Tube
HGTP12N60A4D 功能描述:IGBT 晶體管 600V N-Channel IGBT SMPS Series RoHS:否 制造商:Fairchild Semiconductor 配置: 集電極—發(fā)射極最大電壓 VCEO:650 V 集電極—射極飽和電壓:2.3 V 柵極/發(fā)射極最大電壓:20 V 在25 C的連續(xù)集電極電流:150 A 柵極—射極漏泄電流:400 nA 功率耗散:187 W 最大工作溫度: 封裝 / 箱體:TO-247 封裝:Tube
HGTP12N60A4D 制造商:Intersil Corporation 功能描述:IGBT TO-220
HGTP12N60B3 制造商:INTERSIL 制造商全稱:Intersil Corporation 功能描述:27A, 600V, UFS Series N-Channel IGBTs