Altera Corporation
43
FLEX 10KE Embedded Programmable Logic Family Data Sheet
The VCCINT pins must always be connected to a 2.5-V power supply. With
a 2.5-V VCCINT level, input voltages are compatible with 2.5-V, 3.3-V, and
5.0-V inputs. The VCCIO pins can be connected to either a 2.5-V or 3.3-V
power supply, depending on the output requirements. When the VCCIO
pins are connected to a 2.5-V power supply, the output levels are
compatible with 2.5-V systems. When the VCCIO pins are connected to a
3.3-V power supply, the output high is at 3.3 V and is therefore compatible
with 3.3-V or 5.0-V systems. Devices operating with VCCIO levels higher
than 3.0 V achieve a faster timing delay of tOD2 instead of tOD1.
Table 14 summarizes FLEX 10KE MultiVolt I/O support.
Notes:
(1)
The PCI clamping diode must be disabled to drive an input with voltages higher
than VCCIO.
(2)
When VCCIO = 3.3 V, a FLEX 10KE device can drive a 2.5-V device that has 3.3-V
tolerant inputs.
Open-drain output pins on FLEX 10KE devices (with a pull-up resistor to
the 5.0-V supply) can drive 5.0-V CMOS input pins that require a VIH of
3.5 V. When the open-drain pin is active, it will drive low. When the pin
is inactive, the trace will be pulled up to 5.0 V by the resistor. The open-
drain pin will only drive low or tri-state; it will never drive high. The rise
time is dependent on the value of the pull-up resistor and load
impedance. The IOL current specification should be considered when
selecting a pull-up resistor.
Power Sequencing & Hot-Socketing
Because FLEX 10KE devices can be used in a mixed-voltage environment,
they have been designed specifically to tolerate any possible power-up
sequence. The VCCIO and VCCINT power planes can be powered in any
order.
Signals can be driven into FLEX 10KE devices before and during power
up without damaging the device. Additionally, FLEX 10KE devices do not
drive out during power up. Once operating conditions are reached,
FLEX 10KE devices operate as specified by the user.
Table 14. FLEX 10KE MultiVolt I/O Support
VCCIO (V)
Input Signal (V)
Output Signal (V)
2.5
3.3
5.0
2.5
3.3
5.0
2.5
v
3.3
vv
vv