參數(shù)資料
型號(hào): AM42DL1612DB35IT
廠商: Advanced Micro Devices, Inc.
英文描述: Am29DL16xD 16 Megabit (2 M x 8-Bit/1 M x 16-Bit) CMOS 3.0 Volt-only, Simultaneous Operation Flash Memory and 2 Mbit (128 K x 16-Bit) Static RAM
中文描述: Am29DL16xD 16兆位(2米× 8位/ 1個(gè)M x 16位),3.0伏的CMOS只,同時(shí)作業(yè)快閃記憶體和2兆位(128畝× 16位),靜態(tài)存儲(chǔ)器
文件頁(yè)數(shù): 15/128頁(yè)
文件大?。?/td> 650K
代理商: AM42DL1612DB35IT
第1頁(yè)第2頁(yè)第3頁(yè)第4頁(yè)第5頁(yè)第6頁(yè)第7頁(yè)第8頁(yè)第9頁(yè)第10頁(yè)第11頁(yè)第12頁(yè)第13頁(yè)第14頁(yè)當(dāng)前第15頁(yè)第16頁(yè)第17頁(yè)第18頁(yè)第19頁(yè)第20頁(yè)第21頁(yè)第22頁(yè)第23頁(yè)第24頁(yè)第25頁(yè)第26頁(yè)第27頁(yè)第28頁(yè)第29頁(yè)第30頁(yè)第31頁(yè)第32頁(yè)第33頁(yè)第34頁(yè)第35頁(yè)第36頁(yè)第37頁(yè)第38頁(yè)第39頁(yè)第40頁(yè)第41頁(yè)第42頁(yè)第43頁(yè)第44頁(yè)第45頁(yè)第46頁(yè)第47頁(yè)第48頁(yè)第49頁(yè)第50頁(yè)第51頁(yè)第52頁(yè)第53頁(yè)第54頁(yè)第55頁(yè)第56頁(yè)第57頁(yè)第58頁(yè)第59頁(yè)第60頁(yè)第61頁(yè)第62頁(yè)第63頁(yè)第64頁(yè)第65頁(yè)第66頁(yè)第67頁(yè)第68頁(yè)第69頁(yè)第70頁(yè)第71頁(yè)第72頁(yè)第73頁(yè)第74頁(yè)第75頁(yè)第76頁(yè)第77頁(yè)第78頁(yè)第79頁(yè)第80頁(yè)第81頁(yè)第82頁(yè)第83頁(yè)第84頁(yè)第85頁(yè)第86頁(yè)第87頁(yè)第88頁(yè)第89頁(yè)第90頁(yè)第91頁(yè)第92頁(yè)第93頁(yè)第94頁(yè)第95頁(yè)第96頁(yè)第97頁(yè)第98頁(yè)第99頁(yè)第100頁(yè)第101頁(yè)第102頁(yè)第103頁(yè)第104頁(yè)第105頁(yè)第106頁(yè)第107頁(yè)第108頁(yè)第109頁(yè)第110頁(yè)第111頁(yè)第112頁(yè)第113頁(yè)第114頁(yè)第115頁(yè)第116頁(yè)第117頁(yè)第118頁(yè)第119頁(yè)第120頁(yè)第121頁(yè)第122頁(yè)第123頁(yè)第124頁(yè)第125頁(yè)第126頁(yè)第127頁(yè)第128頁(yè)
February 6, 2004
Am42DL16x2D
13
Word/Byte Configuration
The CIOf pin controls whether the device data I/O pins
operate in the byte or word configuration. If the CIOf
pin is set at logic ‘1’, the device is in word configura-
tion, DQ0–DQ15 are active and controlled by CE# and
OE#.
If the CIOf pin is set at logic ‘0’, the device is in byte
configuration, and only data I/O pins DQ0–DQ7 are
active and controlled by CE# and OE#. The data I/O
pins DQ8–DQ14 are tri-stated, and the DQ15 pin is
used as an input for the LSB (A-1) address function.
Requirements for Reading Array Data
To read array data from the outputs, the system must
drive the CE#f and OE# pins to V
IL
. CE#f is the power
control and selects the device. OE# is the output con-
trol and gates array data to the output pins. WE#
should remain at V
IH
. The CIOf pin determines
whether the device outputs array data in words or
bytes.
The internal state machine is set for reading array data
upon device power-up, or after a hardware reset. This
ensures that no spurious alteration of the memory
content occurs during the power transition. No com-
mand is necessary in this mode to obtain array data.
Standard microprocessor read cycles that assert valid
addresses on the device address inputs produce valid
data on the device data outputs. Each bank remains
enabled for read access until the command register
contents are altered.
See “Requirements for Reading Array Data” for more
information. Refer to the AC Flash Read-Only Opera-
tions table for timing specifications and to Figure 14 for
the timing diagram. I
CC1
in the DC Characteristics table
represents the active current specification for reading
array data.
Writing Commands/Command Sequences
To write a command or command sequence (which in-
cludes programming data to the device and erasing
sectors of memory), the system must drive WE# and
CE#f to V
IL
, and OE# to V
IH
.
For program operations, the CIOf pin determines
whether the device accepts program data in bytes or
words. Refer to “Word/Byte Configuration” for more
information.
The device features an
Unlock Bypass
mode to facili-
tate faster programming. Once a bank enters the
Unlock Bypass mode, only two write cycles are re-
quired to program a word or byte, instead of four. The
“Word/Byte Configuration” section has details on pro-
gramming data to the device using both standard and
Unlock Bypass command sequences.
An erase operation can erase one sector, multiple sec-
tors, or the entire device. Tables 4–5 indicate the
address space that each sector occupies. The device
address space is divided into two banks: Bank 1 con-
tains the boot/parameter sectors, and Bank 2 contains
the larger, code sectors of uniform size. A “bank ad-
dress” is the address bits required to uniquely select a
bank. Similarly, a “sector address” is the address bits
required to uniquely select a sector.
I
CC2
in the DC Characteristics table represents the ac-
tive current specification for the write mode. The AC
Characteristics section contains timing specification
tables and timing diagrams for write operations.
Accelerated Program Operation
The device offers accelerated program operations
through the ACC function. This is one of two functions
provided by the WP#/ACC pin. This function is prima-
rily intended to allow faster manufacturing throughput
at the factory.
If the system asserts V
HH
on this pin, the device auto-
matically enters the aforementioned Unlock Bypass
mode, temporarily unprotects any protected sectors,
and uses the higher voltage on the pin to reduce the
time required for program operations. The system
would use a two-cycle program command sequence
as required by the Unlock Bypass mode. Removing
V
HH
from the WP#/ACC pin returns the device to nor-
mal operation. Note that the WP#/ACC pin must not be
at V
HH
for operations other than accelerated program-
ming, or device damage may result. In addition, the
WP#/ACC pin must not be left floating or unconnected;
inconsistent behavior of the device may result.
Autoselect Functions
If the system writes the autoselect command se-
quence, the device enters the autoselect mode. The
system can then read autoselect codes from the inter-
nal register (which is separate from the memory array)
on DQ7–DQ0. Standard read cycle timings apply in
this mode. Refer to the Autoselect Mode and Autose-
lect Command Sequence sections for more
information.
Simultaneous Read/Write Operations with
Zero Latency
This device is capable of reading data from one bank
of memory while programming or erasing in the other
bank of memory. An erase operation may also be sus-
pended to read from or program to another location
within the same bank (except the sector being
erased). Figure 21 shows how read and write cycles
may be initiated for simultaneous operation with zero
latency. I
CC6
and I
CC7
in the DC Characteristics table
represent the current specifications for read-while-pro-
gram and read-while-erase, respectively.
相關(guān)PDF資料
PDF描述
AM42DL1612DB45IS Am29DL16xD 16 Megabit (2 M x 8-Bit/1 M x 16-Bit) CMOS 3.0 Volt-only, Simultaneous Operation Flash Memory and 2 Mbit (128 K x 16-Bit) Static RAM
AM42DL1612DB45IT Am29DL16xD 16 Megabit (2 M x 8-Bit/1 M x 16-Bit) CMOS 3.0 Volt-only, Simultaneous Operation Flash Memory and 2 Mbit (128 K x 16-Bit) Static RAM
AM42DL1612DB70IS Am29DL16xD 16 Megabit (2 M x 8-Bit/1 M x 16-Bit) CMOS 3.0 Volt-only, Simultaneous Operation Flash Memory and 2 Mbit (128 K x 16-Bit) Static RAM
AM42DL1612DB70IT Am29DL16xD 16 Megabit (2 M x 8-Bit/1 M x 16-Bit) CMOS 3.0 Volt-only, Simultaneous Operation Flash Memory and 2 Mbit (128 K x 16-Bit) Static RAM
AM42DL1612DB85IS Am29DL16xD 16 Megabit (2 M x 8-Bit/1 M x 16-Bit) CMOS 3.0 Volt-only, Simultaneous Operation Flash Memory and 2 Mbit (128 K x 16-Bit) Static RAM
相關(guān)代理商/技術(shù)參數(shù)
參數(shù)描述
AM42DL1612DB45IS 制造商:AMD 制造商全稱:Advanced Micro Devices 功能描述:Am29DL16xD 16 Megabit (2 M x 8-Bit/1 M x 16-Bit) CMOS 3.0 Volt-only, Simultaneous Operation Flash Memory and 2 Mbit (128 K x 16-Bit) Static RAM
AM42DL1612DB45IT 制造商:AMD 制造商全稱:Advanced Micro Devices 功能描述:Am29DL16xD 16 Megabit (2 M x 8-Bit/1 M x 16-Bit) CMOS 3.0 Volt-only, Simultaneous Operation Flash Memory and 2 Mbit (128 K x 16-Bit) Static RAM
AM42DL1612DB70I 制造商:Spansion 功能描述:COMBO 1MX16/2MX8 FLASH + 128KX16 SRAM 3V/3.3V 69FBGA - Trays
AM42DL1612DB70IS 制造商:AMD 制造商全稱:Advanced Micro Devices 功能描述:Am29DL16xD 16 Megabit (2 M x 8-Bit/1 M x 16-Bit) CMOS 3.0 Volt-only, Simultaneous Operation Flash Memory and 2 Mbit (128 K x 16-Bit) Static RAM
AM42DL1612DB70IT 制造商:AMD 制造商全稱:Advanced Micro Devices 功能描述:Am29DL16xD 16 Megabit (2 M x 8-Bit/1 M x 16-Bit) CMOS 3.0 Volt-only, Simultaneous Operation Flash Memory and 2 Mbit (128 K x 16-Bit) Static RAM