A
A
A E
E
E H
H
H 2
2
2 4
4
4 V
V
V IIIIn
n
n p
p
p u
u
u tttt H
H
H a
a
a llllffff--B
B
B rrrriiiic
c
c k
k
k S
S
S e
e
e rrrriiiie
e
e s
s
s P
P
P o
o
o w
w
w e
e
e rrrr C
C
C o
o
o n
n
n v
v
v e
e
e rrrrtttte
e
e rrrrs
s
2
2 ....5
5
5 V
V
V,,,, 3
3
3 ....3
3
3 V
V
V,,,, 5
5
5 V
V
V S
S
S iiiin
n
n g
g
g lllle
e
e O
O
O u
u
u ttttp
p
p u
u
u tttt,,,, 5
5
5 0
0
0 --1
1
1 5
5
5 0
0
0 W
W
-27-
USA
Europe
Asia
TEL:
1-760-930-4600
44-(0)1384-842-211
852-2437-9662
FAX:
1-760-930-0698
44-(0)1384-843-355
852-2402-4426
www.astec.com
Output Over-Current Protection
AEH 24Vin series DC/DC converters feature
foldback current limiting as part of their
Overcurrent Protection (OCP) circuits. When
output current exceeds 110 to 140% of rated
current, such as during a short circuit condition,
the output will shutdown immediately, and can
tolerate short circuit conditions indefinitely.
When the overcurrent condition is removed, the
converter will automatically restart.
Output Filters
When the load is sensitive to ripple and noise,
an output filter can be added to minimize the
effects. A simple output filter to reduce output
ripple and noise can be made by connecting a
capacitor across the output as shown in Figure
16. The recommended value for the output
capacitor C1 is 2200
F/10V.
Extra care should be taken when long leads or
traces are used to provide power to the load.
Long lead lengths increase the chance for
noise to appear on the lines. Under these con-
ditions C2 can be added across the load as
shown in Figure 17. The recommended compo-
nent for C2 is 2200
F/10V capacitor and con-
necting a 0.1
F ceramic capacitor C1 in paral-
lel generally.
Decoupling
Noise on the power distribution system is not
always created by the converter. High speed
analog or digital loads with dynamic power
demands can cause noise to cross the power
inductor back onto the input lines. Noise can be
reduced by decoupling the load. In most cases,
connecting a 10
F tantalum capacitor in paral-
lel with a 0.1
F ceramic capacitor across the
load will decouple it. The capacitors should be
connected as close to the load as possible.
Ground Loops
Ground loops occur when different circuits are
given multiple paths to common or earth
ground, as shown in Figure 18. Multiple ground
points can slightly different potential and cause
current flow through the circuit from one point to
another. This can result in additional noise in all
the circuits. To eliminate the problem, circuits
should be designed with a single ground con-
nection as shown in Figure 19.
Output Over-V
Output Over-Voltage Protection
oltage Protection
The over-voltage protection has a separate
feedback loop which activates when the output
voltage is between 120% and 140% of the
nominal output voltage. When an over-voltage
condition occurs, a “ turn off “ signal was sent
to the input of the module, and shut off the out-
put. The module will restart after power on
again.
+Vout
-Vout
Load
C1
C2
Fig.17 Output Ripple Filter For a Distant
Load
+Vout
-Vout
Load
C1
Fig.16 Output Ripple Filter
+Vout
-Vout
Load
RLine
Ground
Loop
Fig.18 Ground Loops
Fig.19 Single Point Ground
+Vout
-Vout
Load
RLine