參數(shù)資料
型號: ADC12L038CIWM
廠商: NATIONAL SEMICONDUCTOR CORP
元件分類: ADC
英文描述: 3.3V Self-Calibrating 12-Bit Plus Sign Serial I/O A/D Converters with MUX and Sample/Hold
中文描述: 8-CH 12-BIT SUCCESSIVE APPROXIMATION ADC, SERIAL ACCESS, PDSO28
封裝: SOP-28
文件頁數(shù): 31/36頁
文件大?。?/td> 828K
代理商: ADC12L038CIWM
Application Hints
(Continued)
12.0 THE CALIBRATION CYCLE
A calibration cycle needs to be started after the power sup-
plies, reference, and clock have been given enough time to
stabilize after initial turn on. During the calibration cycle, cor-
rection values are determined for the offset voltage of the
sampled data comparator and any linearity and gain errors.
These values are stored in internal RAM and used during an
analog-to-digital conversion to bring the overall full-scale,
offset, and linearity errors down to the specified limits.
Full-scale error typically changes
±
0.4 LSB over tempera-
ture and linearity error changes even less; therefore it should
be necessary to go through the calibration cycle only once
after power up if the Power Supply Voltage and the ambient
temperature do not change significantly (see the curves in
the Typical Performance Characteristics).
13.0 THE AUTO-ZERO CYCLE
To correct for any change in the zero (offset) error of theA/D,
the auto-zero cycle can be used. It may be necessary to do
an auto-zero cycle whenever the ambient temperature or the
power supply voltage change significantly. (See the curves
titled “Zero Error Change vs Ambient Temperature” and
“Zero Error Change vs Supply Voltage” in the Typical Perfor-
mance Characteristics.)
14.0 DYNAMIC PERFORMANCE
Many applications require the A/D converter to digitize AC
signals, but the standard DC integral and differential nonlin-
earity specifications will not accurately predict the A/D con-
verter’s performance with AC input signals. The important
specifications for AC applications reflect the converter’s abil-
ity to digitize AC signals without significant spectral errors
and without adding noise to the digitized signal. Dynamic
characteristics such as signal-to-noise (S/N), signal-to-noise
+ distortion ratio (S/(N + D)), effective bits, full power band-
width, aperture time and aperture jitter are quantitative mea-
sures of the A/D converter’s capability.
An A/D converter’s AC performance can be measured using
Fast Fourier Transform (FFT) methods. A sinusoidal wave-
form is applied to the A/D converter’s input, and the trans-
form is then performed on the digitized waveform. S/(N + D)
and S/N are calculated from the resulting FFT data, and a
spectral plot may also be obtained.
The A/D converter’s noise and distortion levels will change
with the frequency of the input signal, with more distortion
and noise occurring at higher signal frequencies. This can be
seen in the S/(N + D) versus frequency curves. These curves
will also give an indication of the full power bandwidth (the
frequency at which the S/(N + D) or S/N drops 3 dB).
Effective number of bits can also be useful in describing the
A/D’s noise performance. An ideal A/D converter will have
some amount of quantization noise, determined by its reso-
lution, which will yield an optimum S/N ratio given by the fol-
lowing equation:
S/N = (6.02 x n + 1.76) dB
where n is the A/D’s resolution in bits.
The effective bits of a real A/D converter, therefore, can be
found by:
As an example, this device with a
±
2.5V, 10 kHz sine wave
input signal will typically have a S/N of 78 dB, which is
equivalent to 12.6 effective bits.
15.0 AN RS232 SERIAL INTERFACE
Shown below is a schematic for an RS232 interface to any
IBM and compatible PCs. The DTR, RTS, and CTS RS232
signal lines are buffered via level translators and connected
to the ADC12L038’s DI, SCLK, and DO pins, respectively.
The D flip flop drive the CS control line.
DS011830-44
FIGURE 16. Ideal Ground Plane for the ADC12L038
www.national.com
31
相關(guān)PDF資料
PDF描述
ADC14061CCVT Self-Calibrating 14-Bit, 2.5 MSPS, 390 mW A/D Converter
ADC14061 Low Dropout Linear 2-cell Li-Ion Charge Controller with AutoCompTM, 8.4V 8-SOIC -20 to 70
ADC14071CIVBH 14-Bit, 7 MSPS, 380 mW A/D Converter
ADC14071 14-Bit, 7 MSPS, 380 mW A/D Converter
ADC14071EVAL 14-Bit, 7 MSPS, 380 mW A/D Converter
相關(guān)代理商/技術(shù)參數(shù)
參數(shù)描述
ADC12L038CIWM/NOPB 功能描述:IC ADC 12BIT W/S&H +SIGN 28SOIC RoHS:是 類別:集成電路 (IC) >> 數(shù)據(jù)采集 - 模數(shù)轉(zhuǎn)換器 系列:- 產(chǎn)品培訓(xùn)模塊:Lead (SnPb) Finish for COTS Obsolescence Mitigation Program 標(biāo)準(zhǔn)包裝:2,500 系列:- 位數(shù):12 采樣率(每秒):3M 數(shù)據(jù)接口:- 轉(zhuǎn)換器數(shù)目:- 功率耗散(最大):- 電壓電源:- 工作溫度:- 安裝類型:表面貼裝 封裝/外殼:SOT-23-6 供應(yīng)商設(shè)備封裝:SOT-23-6 包裝:帶卷 (TR) 輸入數(shù)目和類型:-
ADC12L038CIWMX 制造商:未知廠家 制造商全稱:未知廠家 功能描述:Single-Ended Data Acquisition System
ADC12L063 制造商:NSC 制造商全稱:National Semiconductor 功能描述:12-Bit, 62 MSPS, 354 mW A/D Converter with Internal Sample-and-Hold
ADC12L063CIVY 功能描述:模數(shù)轉(zhuǎn)換器 - ADC RoHS:否 制造商:Texas Instruments 通道數(shù)量:2 結(jié)構(gòu):Sigma-Delta 轉(zhuǎn)換速率:125 SPs to 8 KSPs 分辨率:24 bit 輸入類型:Differential 信噪比:107 dB 接口類型:SPI 工作電源電壓:1.7 V to 3.6 V, 2.7 V to 5.25 V 最大工作溫度:+ 85 C 安裝風(fēng)格:SMD/SMT 封裝 / 箱體:VQFN-32
ADC12L063CIVY/NOPB 功能描述:模數(shù)轉(zhuǎn)換器 - ADC RoHS:否 制造商:Texas Instruments 通道數(shù)量:2 結(jié)構(gòu):Sigma-Delta 轉(zhuǎn)換速率:125 SPs to 8 KSPs 分辨率:24 bit 輸入類型:Differential 信噪比:107 dB 接口類型:SPI 工作電源電壓:1.7 V to 3.6 V, 2.7 V to 5.25 V 最大工作溫度:+ 85 C 安裝風(fēng)格:SMD/SMT 封裝 / 箱體:VQFN-32