參數(shù)資料
型號: AD9518-3A/PCBZ
廠商: Analog Devices Inc
文件頁數(shù): 26/64頁
文件大?。?/td> 0K
描述: BOARD EVALUATION FOR AD9518-3A
設(shè)計(jì)資源: AD9518 Schematics
AD9518 Gerber Files
AD9518-3 BOM
標(biāo)準(zhǔn)包裝: 1
主要目的: 計(jì)時,時鐘發(fā)生器
嵌入式:
已用 IC / 零件: AD9518-3A
主要屬性: 2 輸入,6 輸出,2.0GHz VCO
次要屬性: LVPECL 輸出邏輯
已供物品:
AD9518-3
Data Sheet
Rev. B | Page 32 of 64
The holdover function senses the logic level of the LD pin as a
condition to enter holdover. The signal at LD can be from the
DLD, ALD, or current source LD mode. It is possible to disable
the LD comparator (Register 0x01D[3]), which causes the holdover
function to always sense LD as high.
If DLD is used, it is possible for the DLD signal to chatter some
while the PLL is reacquiring lock. The holdover function may
retrigger, thereby preventing the holdover mode from ever
terminating. Use of the current source lock detect mode is
recommended to avoid this situation (see the Current Source
Once in holdover mode, the charge pump stays in a high
impedance state as long as there is no reference clock present.
As in the external holdover mode, the B counter (in the N divider)
is reset synchronously with the charge pump leaving the high
impedance state on the reference path PFD event. This helps to
align the edges out of the R and N dividers for faster settling of
the PLL and to reduce frequency errors during settling. Because
the prescaler is not reset, this feature works best when the B and
R numbers are close because this results in a smaller phase
difference for the loop to settle out.
After leaving holdover, the loop then reacquires lock and the
LD pin must charge (if Register 0x01D[3] = 1) before it can
re-enter holdover (CP high impedance).
The holdover function always responds to the state of the
currently selected reference (Register 0x01C). If the loop loses
lock during a reference switchover (see the Reference Switchover
section), holdover is triggered briefly until the next reference
clock edge at the PFD.
The following registers affect automatic/internal holdover:
Register 0x018[6:5], lock detect counter. These bits change
the number of consecutive PFD cycles with edges inside the
lock detect window that are required for the DLD indicator
to indicate lock. This impacts the time required before the
LD pin can begin to charge, as well as the delay from the end
of a holdover event until the holdover function can be
re-engaged.
Register 0x018[3], disable digital lock detect. This bit must be
set to 0b to enable the DLD circuit. Automatic/internal hold-
over does not operate correctly without the DLD function
enabled.
Register 0x01A[5:0], lock detect pin output select. Set these
bits to 000100b for the current source lock detect mode
if using the LD pin comparator. Load the LD pin with
a capacitor of an appropriate value.
Register 0x01D[3], enable LD pin comparator. 1 = enable;
0 = disable. When disabled, the holdover function always
senses the LD pin as high.
Register 0x01D[1], enable external holdover control.
Register 0x01D[0] and Register 0x01D[2], enable holdover
function. If holdover is disabled, both external and
automatic/internal holdover are disabled.
For example, to use automatic holdover with the following:
Automatic reference switchover, prefer REF1
Digital lock detect: five PFD cycles, high range window
Automatic holdover using the LD pin comparator
Set the following registers (in addition to the normal PLL registers):
Register 0x018[6:5] = 00b; lock detect counter = five cycles.
Register 0x018[4] = 0b; lock detect window = high range.
Register 0x018[3] = 0b; DLD normal operation.
Register 0x01A[5:0] = 000100b; current source lock detect
mode.
Register 0x01B[7:0] = 0xF7; set REFMON pin to status of
REF1 (active low).
Register 0x01C[2:1] = 11b; enable REF1 and REF2 input
buffers.
Register 0x01D[3] = 1b; enable LD pin comparator.
Register 0x01D[2]=1b; enable the holdover function.
Register 0x01D[1] = 0b; use internal/automatic holdover
mode.
Register 0x01D[0] = 1b; enable the holdover function.
(VCO calibration must be complete before this bit is
enabled.)
Connect REFMON pin to REFSEL pin.
Frequency Status Monitors
The AD9518 contains three frequency status monitors that are
used to indicate if the PLL reference (or references in the case of
single-ended mode) and the VCO have fallen below a threshold
frequency. A diagram showing their location in the PLL is shown
in Figure 39. The VCO status frequency monitor is also capable
of monitoring the CLK input if the CLK input is selected as the
input to the N divider.
The PLL reference frequency monitors have two threshold
frequencies: normal and extended (see Table 15). The reference
frequency monitor thresholds are selected in Register 0x01A
The frequency monitor status can be found in Register 0x01F,
Bits[3:1].
相關(guān)PDF資料
PDF描述
AD9518-4A/PCBZ BOARD EVALUATION FOR AD9518-4A
BA6920FP-Y IC DRIVER REVERSE MOTOR HSOP25
VE-JTW-EZ-S CONVERTER MOD DC/DC 5.5V 25W
AD9518-2A/PCBZ BOARD EVALUATION FOR AD9518-2A
FCBP110LD1L10 CABLE 10.5GBPS 10M LASERWIRE
相關(guān)代理商/技術(shù)參數(shù)
參數(shù)描述
AD9518-3BCPZ 制造商:Rochester Electronics LLC 功能描述: 制造商:Analog Devices 功能描述:
AD9518-3BCPZ-REEL7 制造商:Analog Devices 功能描述:Clock Generator 48-Pin LFCSP EP T/R
AD9518-4 制造商:AD 制造商全稱:Analog Devices 功能描述:6-Output Clock Generator with Integrated 1.6 GHz VCO
AD9518-4A/PCBZ 功能描述:BOARD EVALUATION FOR AD9518-4A RoHS:是 類別:編程器,開發(fā)系統(tǒng) >> 評估演示板和套件 系列:- 標(biāo)準(zhǔn)包裝:1 系列:- 主要目的:電信,線路接口單元(LIU) 嵌入式:- 已用 IC / 零件:IDT82V2081 主要屬性:T1/J1/E1 LIU 次要屬性:- 已供物品:板,電源,線纜,CD 其它名稱:82EBV2081
AD9518-4ABCPZ 功能描述:IC CLOCK GEN 6CH 1.8GHZ 48LFCSP RoHS:是 類別:集成電路 (IC) >> 時鐘/計(jì)時 - 時鐘發(fā)生器,PLL,頻率合成器 系列:- 標(biāo)準(zhǔn)包裝:1,000 系列:Precision Edge® 類型:時鐘/頻率合成器 PLL:無 輸入:CML,PECL 輸出:CML 電路數(shù):1 比率 - 輸入:輸出:2:1 差分 - 輸入:輸出:是/是 頻率 - 最大:10.7GHz 除法器/乘法器:無/無 電源電壓:2.375 V ~ 3.6 V 工作溫度:-40°C ~ 85°C 安裝類型:表面貼裝 封裝/外殼:16-VFQFN 裸露焊盤,16-MLF? 供應(yīng)商設(shè)備封裝:16-MLF?(3x3) 包裝:帶卷 (TR) 其它名稱:SY58052UMGTRSY58052UMGTR-ND