參數(shù)資料
型號(hào): AD7715ARUZ-3
廠(chǎng)商: Analog Devices Inc
文件頁(yè)數(shù): 19/40頁(yè)
文件大?。?/td> 0K
描述: IC ADC 16BIT SIGMA-DELTA 16TSSOP
標(biāo)準(zhǔn)包裝: 1
位數(shù): 16
采樣率(每秒): 500
數(shù)據(jù)接口: DSP,MICROWIRE?,QSPI?,串行,SPI?
轉(zhuǎn)換器數(shù)目: 1
功率耗散(最大): 9.5mW
電壓電源: 模擬和數(shù)字
工作溫度: -40°C ~ 85°C
安裝類(lèi)型: 表面貼裝
封裝/外殼: 16-TSSOP(0.173",4.40mm 寬)
供應(yīng)商設(shè)備封裝: 16-TSSOP
包裝: 管件
輸入數(shù)目和類(lèi)型: 1 個(gè)差分,單極;1 個(gè)差分,雙極
配用: EVAL-AD7715-3EBZ-ND - BOARD EVALUATION FOR AD7715
AD7715
Rev. D | Page 26 of 40
USING THE AD7715
CLOCKING AND OSCILLATOR CIRCUIT
The AD7715 requires a master clock input, which may be an
external CMOS compatible clock signal applied to the MCLK
IN pin with the MCLK OUT pin left unconnected. Alternatively,
a crystal or ceramic resonator of the correct frequency can be
connected between MCLK IN and MCLK OUT in which case
the clock circuit functions as an oscillator, providing the clock
source for the part. The input sampling frequency, the modula-
tor sampling frequency, the 3 dB frequency, output update
rate and calibration time are all directly related to the master
clock frequency, fCLK IN. Reducing the master clock frequency by
a factor of 2 will halve the above frequencies and update rate,
and double the calibration time. The current drawn from the
DVDD power supply is also directly related to fCLK IN. Reducing
fCLK IN by a factor of 2 will halve the DVDD current but does not
affect the current drawn from the AVDD power supply.
Using the part with a crystal or ceramic resonator between the
MCLK IN and MCLK OUT pins generally causes more current
to be drawn from DVDD than when the part is clocked from a
driven clock signal at the MCLK IN pin. This is because the on-
chip oscillator circuit is active in the case of the crystal or ceramic
resonator. Therefore, the lowest possible current on the AD7715
is achieved with an externally applied clock at the MCLK IN pin
with MCLK OUT unconnected and unloaded.
The amount of additional current taken by the oscillator depends
on a number of factors—first, the larger the value of capacitor
placed on the MCLK IN and MCLK OUT pins, then the larger
the DVDD current consumption on the AD7715. Take care not
to exceed the capacitor values recommended by the crystal and
ceramic resonator manufacturers to avoid consuming unnecessary
DVDD current. Typical values recommended by crystal or
ceramic resonator manufacturers are in the range of 30 pF to
50 pF, and if the capacitor values on MCLK IN and MCLK OUT
are kept in this range, they will not result in any excessive DVDD
current. Another factor that influences the DVDD current is the
effective series resistance (ESR) of the crystal which appears
between the MCLK IN and MCLK OUT pins of the AD7715.
As a general rule, the lower the ESR value then the lower the
current taken by the oscillator circuit.
When operating with a clock frequency of 2.4576 MHz, there
is 50 μA difference in the DVDD current between an externally
applied clock and a crystal resonator when operating with a
DVDD of 3 V. With DVDD = 5 V and fCLK IN = 2.4576 MHz, the
typical DVDD current increases by 200 μA for a crystal/resonat
or supplied clock vs. an externally applied clock. The ESR values
for crystals and resonators at this frequency tend to be low and
as a result there tends to be little difference between different
crystal and resonator types.
When operating with a clock frequency of 1 MHz, the ESR
value for different crystal types varies significantly. As a result,
the DVDD current drain varies across crystal types. When using
a crystal with an ESR of 700 Ω or when using a ceramic resonator,
the increase in the typical DVDD current over an externally-
applied clock is 50 μA with DVDD = 3 V and 175 μA with DVDD
= 5 V. When using a crystal with an ESR of 3 kΩ, the increase in
the typical DVDD current over an externally applied clock is 100 μA
with DVDD = 3 V and 400 μA with DVDD = 5 V.
The on-chip oscillator circuit also has a start-up time associated
with it before it is oscillating at its correct frequency and correct
voltage levels. The typical start-up time for the circuit is 10 ms
with a DVDD of 5 V and 15 ms with a DVDD of 3 V. At 3 V supplies,
depending on the loading capacitances on the MCLK pins, a
1 MΩ feedback resistor may be required across the crystal or
resonator to keep the start up times around the 15 ms duration.
The master clock of AD7715 appears on the MCLK OUT pin
of the device. The maximum recommended load on this pin is
one CMOS load. When using a crystal or ceramic resonator to
generate the clock of the AD7715, it may be desirable to then
use this clock as the clock source for the system. In this case, it
is recommended that the MCLK OUT signal is buffered with a
CMOS buffer before being applied to the rest of the circuit.
SYSTEM SYNCHRONIZATION
The FSYNC bit of the setup register allows the user to reset the
modulator and digital filter without affecting any of the setup
conditions on the part. This allows the user to start gathering
samples of the analog input from a known point in time, that is,
when the FSYNC is changed from 1 to 0.
With a 1 in the FSYNC bit of the setup register, the digital filter
and analog modulator are held in a known reset state and the
part is not processing any input samples. When a 0 is then
written to the FSYNC bit, the modulator and filter are taken
out of this reset state and on the next master clock edge the
part starts to gather samples again.
The FSYNC input can also be used as a software start convert
command allowing the AD7715 to be operated in a conven-
tional converter fashion. In this mode, writing to the FSYNC bit
starts a conversion and the falling edge of DRDY indicates when
the conversion is complete. The disadvantage of this scheme is
that the settling time of the filter has to be taken into account
for every data register update. This means that the rate at which
the data register is updated is three times slower in this mode.
相關(guān)PDF資料
PDF描述
TPA2016D2RTJR IC AMP AUDIO PWR 2.8W D 20QFN
AD7476AYRMZ IC ADC 12BIT 2.35V 1MSPS 8-MSOP
AD7854LARSZ IC ADC 12BIT PARALLEL LP 28SSOP
VI-J14-MY-F4 CONVERTER MOD DC/DC 48V 50W
VI-J13-MY-F4 CONVERTER MOD DC/DC 24V 50W
相關(guān)代理商/技術(shù)參數(shù)
參數(shù)描述
AD7715ARUZ-31 制造商:AD 制造商全稱(chēng):Analog Devices 功能描述:3 V/5 V, 450 ??A 16-Bit, Sigma-Delta ADC
AD7715ARUZ-3REEL7 功能描述:IC ADC 16BIT SIGMA-DELTA 16TSSOP RoHS:是 類(lèi)別:集成電路 (IC) >> 數(shù)據(jù)采集 - 模數(shù)轉(zhuǎn)換器 系列:- 標(biāo)準(zhǔn)包裝:1,000 系列:- 位數(shù):16 采樣率(每秒):45k 數(shù)據(jù)接口:串行 轉(zhuǎn)換器數(shù)目:2 功率耗散(最大):315mW 電壓電源:模擬和數(shù)字 工作溫度:0°C ~ 70°C 安裝類(lèi)型:表面貼裝 封裝/外殼:28-SOIC(0.295",7.50mm 寬) 供應(yīng)商設(shè)備封裝:28-SOIC W 包裝:帶卷 (TR) 輸入數(shù)目和類(lèi)型:2 個(gè)單端,單極
AD7715ARUZ-3REEL71 制造商:AD 制造商全稱(chēng):Analog Devices 功能描述:3 V/5 V, 450 ??A 16-Bit, Sigma-Delta ADC
AD7715ARUZ-5 功能描述:IC ADC 16BIT SIGMA-DELTA 16TSSOP RoHS:是 類(lèi)別:集成電路 (IC) >> 數(shù)據(jù)采集 - 模數(shù)轉(zhuǎn)換器 系列:- 其它有關(guān)文件:TSA1204 View All Specifications 標(biāo)準(zhǔn)包裝:1 系列:- 位數(shù):12 采樣率(每秒):20M 數(shù)據(jù)接口:并聯(lián) 轉(zhuǎn)換器數(shù)目:2 功率耗散(最大):155mW 電壓電源:模擬和數(shù)字 工作溫度:-40°C ~ 85°C 安裝類(lèi)型:表面貼裝 封裝/外殼:48-TQFP 供應(yīng)商設(shè)備封裝:48-TQFP(7x7) 包裝:Digi-Reel® 輸入數(shù)目和類(lèi)型:4 個(gè)單端,單極;2 個(gè)差分,單極 產(chǎn)品目錄頁(yè)面:1156 (CN2011-ZH PDF) 其它名稱(chēng):497-5435-6
AD7715ARUZ-51 制造商:AD 制造商全稱(chēng):Analog Devices 功能描述:3 V/5 V, 450 ??A 16-Bit, Sigma-Delta ADC