
5
Applications
Unipolar Binary Operation
The circuit configuration for operating the AD7520 in
unipolar mode is shown in Figure 8. Similar circuits can be
used for AD7521. With positive and negative V
REF
values
the circuit is capable of 2-Quadrant multiplication. The
Digital
Input Code/Analog Output Value
table for unipolar mode is
given in Table 1.
Zero Offset Adjustment
1. Connect all digital inputs to GND.
2. Adjust the offset zero adjust trimpot of the output
operational amplifier for 0V at V
OUT
.
Gain Adjustment
1. Connect all digital inputs to V+.
2. Monitor V
OUT
for a -V
REF
(1-2
-N
) reading. (N = 8 for
AD7520 and N = 10 for AD7521).
FIGURE 4. NOISE
FIGURE 5. OUTPUT CAPACITANCE
FIGURE 6. FEEDTHROUGH ERROR
FIGURE 7. OUTPUT CURRENT SETTLING TIME
Test Circuits
The following test circuits apply for the AD7520. Similar circuits are used for the AD7521.
(Continued)
15
4
2
5
AD7520
133
1
101ALN
+
-
0.1
μ
F
I
OUT1
I
OUT2
14
10k
V
OUT
100
15
μ
F
1K
+15V
50k
1k
-50V
f = 1kHz
BW = 1Hz
QUAN
TECH
MODEL 134D
WAVE
ANALYZER
+11V (ADJUST FOR V
OUT
= 0V)
15
4
16
1
2
5
13 3
AD7520
BIT 1 (MSB)
BIT 10 (LSB)
14
+15V
NC
SCOPE
100mV
P-P
1MHz
NC
1k
+15V
15
4
16
1
5
AD7520
13
3
2
BIT 1 (MSB)
BIT 10 (LSB)
14
+15V
V
REF
= 20V
P-P
100kHz SINE WAVE
GND
I
OUT1
I
OUT2
2
3
6
V
OUT
HA2600
+
-
15
4
1
2
5
13 3
AD7520
BIT 1 (MSB)
BIT 10 (LSB)
14
+15V
SCOPE
+100mV
100
GND
V
REF
DIGITAL
INPUT
I
OUT2
EXTRAPOLATE
5t: 1% SETTLING (1mV)
8t: 0.03% SETTLING
t = RISE TIME
+5V
0V
+10V
15
4
16
1
5
AD7520
13
3
2
BIT 1 (MSB)
BIT 10 (LSB)
14
+15V
V
REF
GND
I
OUT1
I
OUT2
6
+
V
OUT
-
R
FEEDBACK
DIGITAL
INPUT
FIGURE 8. UNIPOLAR BINARY OPERATION (2-QUADRANT
MULTIPLICATION)
TABLE 1. CODE TABLE - UNlPOLAR BINARY OPERATION
DIGITAL INPUT
ANALOG OUTPUT
1111111111
-V
REF
(1-2
-N
)
-V
REF
(
1
/
2
+ 2
-N
)
1000000001
1000000000
-V
REF
/2
-V
REF
(
1
/
2
-2
-N
)
-V
REF
(2
-N
)
0111111111
0000000001
0000000000
0
NOTES:
1. LSB = 2
-N
V
REF
.
2. N = 8 for 7520
N = 10 for 7521.
AD7520, AD7521