參數(shù)資料
型號(hào): AD5663BCPZ-REEL7
廠商: Analog Devices Inc
文件頁(yè)數(shù): 4/24頁(yè)
文件大?。?/td> 0K
描述: IC DAC NANO 16BIT DUAL 10-LFCSP
產(chǎn)品培訓(xùn)模塊: Data Converter Fundamentals
DAC Architectures
標(biāo)準(zhǔn)包裝: 1
系列: nanoDAC™
設(shè)置時(shí)間: 4µs
位數(shù): 16
數(shù)據(jù)接口: 串行
轉(zhuǎn)換器數(shù)目: 2
電壓電源: 單電源
功率耗散(最大): 2.5mW
工作溫度: -40°C ~ 105°C
安裝類型: 表面貼裝
封裝/外殼: 10-WFDFN 裸露焊盤(pán),CSP
供應(yīng)商設(shè)備封裝: 10-LFCSP-WD(3x3)
包裝: 標(biāo)準(zhǔn)包裝
輸出數(shù)目和類型: 2 電壓,單極;2 電壓,雙極
采樣率(每秒): 220k
配用: EVAL-AD5663REBZ-ND - BOARD EVAL FOR AD5663
其它名稱: AD5663BCPZ-REEL7DKR
AD5663
Rev. 0 | Page 12 of 24
TERMINOLOGY
Relative Accuracy or Integral Nonlinearity (INL)
For the DAC, relative accuracy or integral nonlinearity is a
measurement of the maximum deviation, in LSBs, from a
straight line passing through the endpoints of the DAC transfer
function. A typical INL vs. code plot is shown in Figure 4.
Differential Nonlinearity (DNL)
Differential nonlinearity is the difference between the measured
change and the ideal 1 LSB change between any two adjacent
codes. A specified differential nonlinearity of ±1 LSB maximum
ensures monotonicity. This DAC is guaranteed monotonic by
design. A typical DNL vs. code plot is shown in Figure 5.
Zero-Scale Error
Zero-scale error is a measurement of the output error when
zero code (0x0000) is loaded to the DAC register. Ideally, the
output should be 0 V. The zero-scale error is always positive in
the AD5663 because the output of the DAC cannot go below
0 V. It is due to a combination of the offset errors in the DAC
and the output amplifier. Zero-scale error is expressed in mV.
A plot of zero-scale error vs. temperature is shown in Figure 10.
Full-Scale Error
Full-scale error is a measurement of the output error when full-
scale code (0xFFFF) is loaded to the DAC register. Ideally, the
output should be VDD 1 LSB. Full-scale error is expressed in
percent of full-scale range. A plot of full-scale error vs. tempera-
ture is shown in Figure 9.
Gain Error
Gain error is a measure of the span error of the DAC. It is the
deviation in slope of the DAC transfer characteristic from ideal
expressed as a percent of the full-scale range.
Zero-Scale Error Drift
Zero-scale error drift is a measurement of the change in zero-
scale error with a change in temperature. It is expressed in μV/°C.
Gain Temperature Coefficient
Gain temperature coefficient is a measurement of the change in
gain error with changes in temperature. It is expressed in (ppm
of full-scale range)/°C.
Offset Error
Offset error is a measure of the difference between VOUT (actual)
and VOUT(ideal) expressed in mV in the linear region of the trans-
fer function. Offset error is measured on the AD5663 with
Code 512 loaded in the DAC register. It can be negative or
positive.
DC Power Supply Rejection Ratio (PSRR)
PSRR indicates how the output of the DAC is affected by changes
in the supply voltage. PSRR is the ratio of the change in VOUT to
a change in VDD for full-scale output of the DAC. It is measured
in dB. VREF is held at 2 V, and VDD is varied by ±10%.
Output Voltage Settling Time
Output voltage settling time is the amount of time it takes for the
output of a DAC to settle to a specified level for a 1/4 to 3/4 full-
scale input change and is measured from the 24th falling edge of
SCLK.
Digital-to-Analog Glitch Impulse
Digital-to-analog glitch impulse is the impulse injected into the
analog output when the input code in the DAC register changes
state. It is normally specified as the area of the glitch in nV-s,
and is measured when the digital input code is changed by
1 LSB at the major carry transition (0x7FFF to 0x8000). See
Digital Feedthrough
Digital feedthrough is a measure of the impulse injected into
the analog output of the DAC from the digital inputs of the
DAC, but it is measured when the DAC output is not updated.
It is specified in nV-s and measured with a full-scale code change
on the data bus, that is, from all 0s to all 1s and vice versa.
Total Harmonic Distortion (THD)
Total harmonic distortion is the difference between an ideal
sine wave and its attenuated version using the DAC. The sine
wave is used as the reference for the DAC, and the THD is a
measurement of the harmonics present on the DAC output.
It is measured in dB.
Noise Spectral Density
Noise spectral density is a measurement of the internally
generated random noise. Random noise is characterized as a
spectral density (voltage per √Hz). It is measured by loading the
DAC to midscale and measuring noise at the output. It is
measured in nV/√Hz. Figure 24 shows a plot of noise spectral
density.
DC Crosstalk
DC crosstalk is the dc change in the output level of one DAC in
response to a change in the output of another DAC. It is measured
with a full-scale output change on one DAC (or soft power-down
and power-up) while monitoring another DAC kept at midscale.
It is expressed in μV.
DC crosstalk due to load current change is a measure of the
impact that a change in load current on one DAC has to another
DAC kept at midscale. It is expressed in μV/mA.
Digital Crosstalk
Digital crosstalk is the glitch impulse transferred to the output
of one DAC at midscale in response to a full-scale code change
(all 0s to all 1s and vice versa) in the input register of another
DAC. It is measured in standalone mode and is expressed
in nV-s.
相關(guān)PDF資料
PDF描述
MC100ES6220AER2 IC CLK BUFFER 1:10 1GHZ 52-LQFP
AD5663BRMZ-1REEL7 IC DAC 16BIT DUAL 10-MSOP
IDT5T907PAGI8 IC CLK BUFF 1:10 250MHZ 48-TSSOP
AD5322ARM-REEL7 IC DAC 12BIT DUAL R-R 10-MSOP TR
VE-240-IV-S CONVERTER MOD DC/DC 5V 150W
相關(guān)代理商/技術(shù)參數(shù)
參數(shù)描述
AD5663BRMZ 功能描述:IC DAC NANO 16BIT DUAL 10-MSOP RoHS:是 類別:集成電路 (IC) >> 數(shù)據(jù)采集 - 數(shù)模轉(zhuǎn)換器 系列:nanoDAC™ 標(biāo)準(zhǔn)包裝:1 系列:- 設(shè)置時(shí)間:4.5µs 位數(shù):12 數(shù)據(jù)接口:串行,SPI? 轉(zhuǎn)換器數(shù)目:1 電壓電源:單電源 功率耗散(最大):- 工作溫度:-40°C ~ 125°C 安裝類型:表面貼裝 封裝/外殼:8-SOIC(0.154",3.90mm 寬) 供應(yīng)商設(shè)備封裝:8-SOICN 包裝:剪切帶 (CT) 輸出數(shù)目和類型:1 電壓,單極;1 電壓,雙極 采樣率(每秒):* 其它名稱:MCP4921T-E/SNCTMCP4921T-E/SNRCTMCP4921T-E/SNRCT-ND
AD5663BRMZ-1 功能描述:IC DAC NANO 16BIT DUAL 10-MSOP RoHS:是 類別:集成電路 (IC) >> 數(shù)據(jù)采集 - 數(shù)模轉(zhuǎn)換器 系列:nanoDAC™ 產(chǎn)品培訓(xùn)模塊:Lead (SnPb) Finish for COTS Obsolescence Mitigation Program 標(biāo)準(zhǔn)包裝:50 系列:- 設(shè)置時(shí)間:4µs 位數(shù):12 數(shù)據(jù)接口:串行 轉(zhuǎn)換器數(shù)目:2 電壓電源:單電源 功率耗散(最大):- 工作溫度:-40°C ~ 85°C 安裝類型:表面貼裝 封裝/外殼:8-TSSOP,8-MSOP(0.118",3.00mm 寬) 供應(yīng)商設(shè)備封裝:8-uMAX 包裝:管件 輸出數(shù)目和類型:2 電壓,單極 采樣率(每秒):* 產(chǎn)品目錄頁(yè)面:1398 (CN2011-ZH PDF)
AD5663BRMZ-1REEL7 功能描述:IC DAC 16BIT DUAL 10-MSOP RoHS:是 類別:集成電路 (IC) >> 數(shù)據(jù)采集 - 數(shù)模轉(zhuǎn)換器 系列:nanoDAC™ 產(chǎn)品培訓(xùn)模塊:LTC263x 12-, 10-, and 8-Bit VOUT DAC Family 特色產(chǎn)品:LTC2636 - Octal 12-/10-/8-Bit SPI VOUT DACs with 10ppm/°C Reference 標(biāo)準(zhǔn)包裝:91 系列:- 設(shè)置時(shí)間:4µs 位數(shù):10 數(shù)據(jù)接口:MICROWIRE?,串行,SPI? 轉(zhuǎn)換器數(shù)目:8 電壓電源:單電源 功率耗散(最大):2.7mW 工作溫度:-40°C ~ 85°C 安裝類型:表面貼裝 封裝/外殼:14-WFDFN 裸露焊盤(pán) 供應(yīng)商設(shè)備封裝:14-DFN-EP(4x3) 包裝:管件 輸出數(shù)目和類型:8 電壓,單極 采樣率(每秒):*
AD5663BRMZ-REEL7 功能描述:IC DAC 16BIT DUAL 10-MSOP RoHS:是 類別:集成電路 (IC) >> 數(shù)據(jù)采集 - 數(shù)模轉(zhuǎn)換器 系列:nanoDAC™ 產(chǎn)品培訓(xùn)模塊:LTC263x 12-, 10-, and 8-Bit VOUT DAC Family 特色產(chǎn)品:LTC2636 - Octal 12-/10-/8-Bit SPI VOUT DACs with 10ppm/°C Reference 標(biāo)準(zhǔn)包裝:91 系列:- 設(shè)置時(shí)間:4µs 位數(shù):10 數(shù)據(jù)接口:MICROWIRE?,串行,SPI? 轉(zhuǎn)換器數(shù)目:8 電壓電源:單電源 功率耗散(最大):2.7mW 工作溫度:-40°C ~ 85°C 安裝類型:表面貼裝 封裝/外殼:14-WFDFN 裸露焊盤(pán) 供應(yīng)商設(shè)備封裝:14-DFN-EP(4x3) 包裝:管件 輸出數(shù)目和類型:8 電壓,單極 采樣率(每秒):*
AD5663R 制造商:AD 制造商全稱:Analog Devices 功能描述:Dual 12-/14-/16-Bit nanoDAC with 5 ppm/C On-Chip Reference