參數(shù)資料
型號: X28HC64EM-12
廠商: INTERSIL CORP
元件分類: DRAM
英文描述: 5 Volt, Byte Alterable EEPROM
中文描述: 8K X 8 EEPROM 5V, 120 ns, CQCC32
封裝: LCC-32
文件頁數(shù): 3/24頁
文件大?。?/td> 112K
代理商: X28HC64EM-12
X28HC64
3
DEVICE OPERATION
Read
Read operations are initiated by both
OE
and
CE
LOW.
The read operation is terminated by either
CE
or
OE
returning HIGH. This two line control architecture elimi-
nates bus contention in a system environment. The data
bus will be in a high impedance state when either
OE
or
CE
is HIGH.
Write
Write operations are initiated when both
CE
and
WE
are
LOW and
OE
is HIGH. The X28HC64 supports both a
CE
and
WE
controlled write cycle. That is, the address
is latched by the falling edge of either
CE
or
WE
,
whichever occurs last. Similarly, the data is latched
internally by the rising edge of either
CE
or
WE
, which-
ever occurs first. A byte write operation, once initiated,
will automatically continue to completion, typically within
2ms.
Page Write Operation
The page write feature of the X28HC64 allows the entire
memory to be written in 0.25 seconds. Page write allows
two to sixty-four bytes of data to be consecutively written
to the X28HC64 prior to the commencement of the
internal programming cycle. The host can fetch data
from another device within the system during a page
write operation (change the source address), but the
page address (A
6
through A
12
) for each subsequent
valid write cycle to the part during this operation must be
the same as the initial page address.
The page write mode can be initiated during any write
operation. Following the initial byte write cycle, the host
can write an additional one to sixty-three bytes in the
same manner as the first byte was written. Each succes-
sive byte load cycle, started by the
WE
HIGH to LOW
transition, must begin within 100
μ
s of the falling edge of
the preceding
WE
. If a subsequent
WE
HIGH to LOW
transition is not detected within 100
μ
s, the internal
automatic programming cycle will commence. There is
no page write window limitation. Effectively the page
write window is infinitely wide, so long as the host
continues to access the device within the byte load cycle
time of 100
μ
s.
Write Operation Status Bits
The X28HC64 provides the user two write operation
status bits. These can be used to optimize a system
write cycle time. The status bits are mapped onto the
I/O bus as shown in Figure 1.
DATA
Polling (I/O
7
)
The X28HC64 features
DATA
Polling as a method to
indicate to the host system that the byte write or page
write cycle has completed.
DATA
Polling allows a simple
bit test operation to determine the status of the X28HC64,
eliminating additional interrupt inputs or external hard-
ware. During the internal programming cycle, any at-
tempt to read the last byte written will produce the
complement of that data on I/O
7
(i.e. write data = 0xxx
xxxx, read data = 1xxx xxxx). Once the programming
cycle is complete, I/O
7
will reflect true data.
Toggle Bit (I/O
6
)
The X28HC64 also provides another method for deter-
mining when the internal write cycle is complete. During
the internal programming cycle I/O
6
will toggle from
HIGH to LOW and LOW to HIGH on subsequent
attempts to read the device. When the internal cycle is
complete the toggling will cease and the device will be
accessible for additional read or write operations.
Figure 1. Status Bit Assignment
3857 FHD F11
5
TB
DP
4
3
2
1
0
I/O
RESERVED
TOGGLE BIT
DATA POLLING
相關PDF資料
PDF描述
X28HC64FI-70 5 Volt, Byte Alterable EEPROM
X28HC64FI-90 5 Volt, Byte Alterable EEPROM
X28HC64JM-70 5 Volt, Byte Alterable EEPROM
X28HC64JM-90 5 Volt, Byte Alterable EEPROM
X28HC64JMB-12 5 Volt, Byte Alterable EEPROM
相關代理商/技術參數(shù)
參數(shù)描述
X28HC64EM-50 制造商:XICOR 制造商全稱:Xicor Inc. 功能描述:5 Volt, Byte Alterable E2PROM
X28HC64EM-55 制造商:未知廠家 制造商全稱:未知廠家 功能描述:x8 EEPROM
X28HC64EM-70 制造商:INTERSIL 制造商全稱:Intersil Corporation 功能描述:5 Volt, Byte Alterable EEPROM
X28HC64EM-90 制造商:INTERSIL 制造商全稱:Intersil Corporation 功能描述:5 Volt, Byte Alterable EEPROM
X28HC64EMB-12 制造商:INTERSIL 制造商全稱:Intersil Corporation 功能描述:5 Volt, Byte Alterable EEPROM