
4-84
Power Dissipation Ratings
Should transients occur in rapid succession, the average
power dissipation required is simply the energy (watt-
seconds) per pulse times the number of pulses per second.
The power so developed must be within the specifications
shown on the Device Ratings and Specifications table for the
specific device. Furthermore, the operating values need to
be derated at high temperatures as shown in Figure 1.
Because varistors can only dissipate a relatively small
amount of average power they are, therefore, not suitable for
repetitive applications that involve substantial amounts of
average power dissipation.
1.
Device Leakage Current
MODEL
NUMBER
PART SIZE
LEAKAGE CURRENT AT V
T(DC)
25
o
C
125
o
C
I
L
(
TYP
I
L
(
MAX
I
L
(
TYP
I
L
(
MAX
V
T(DC)
(V)
μ
A)
μ
A)
μ
A)
μ
A)
V8CP22
22B
0.5
5.0
5.0
50
8
V14CP22
22B
0.5
5.0
5.0
50
14
V31CP22
22B
0.5
5.0
5.0
50
28
V38CP22
22B
0.5
5.0
5.0
50
36
V130CP22
22A
0.5
5.0
25.0
100
130
V150CP22
22A
0.5
5.0
25.0
100
150
V31CP20
20B
0.5
5.0
5.0
50
28
V38CP20
20B
0.5
5.0
5.0
50
36
V130CP20
20A
0.5
5.0
25.0
100
130
V150CP20
20A
0.5
5.0
25.0
100
150
V38CP16
16A
0.5
5.0
5.0
50
36
V130CP16
16A
0.5
5.0
25.0
100
130
V150CP16
16A
0.5
5.0
25.0
100
150
100
90
80
70
60
50
40
30
20
10
0
-55
50
60
70
AMBIENT TEMPERATURE (
o
C)
80
90
100
110
120
130
140 150
P
FIGURE 1. CURRENT, ENERGY AND POWER DERATING
CURVE
FIGURE 2. PEAK PULSE CURRENT TEST WAVEFORM
100
90
50
10
O
1
T
T
1
T
2
TIME
P
O
1
= Virtual Origin of Wave
T = Time From 10% to 90% of Peak
T
1
= Virtual Front time = 1.25
t
T
2
= Virtual Time to Half Value (Impulse Duration)
Example: For an 8/20
μ
s Current Waveform:
8
μ
s = T
1
= Virtual Front Time
20
μ
s = T
2
= Virtual Time to Half Value
CP Series
PART
PART
OBSOLETE