![](http://datasheet.mmic.net.cn/150000/TPS54873PWPG4_datasheet_5022262/TPS54873PWPG4_14.png)
TPS54873
SLVS444A OCTOBER 2002 REVISED FEBRUARY 2005
www.ti.com
14
Switching Frequency + 100 kW
R
500 [kHz]
External synchronization of the PWM ramp is possible
over the frequency range of 330 kHz to 700 kHz by driving
a synchronization signal into SYNC and connecting a
resistor from RT to AGND. Choose a resistor between the
RT and AGND which sets the free running frequency to
80% of the synchronization signal. The following table
summarizes the frequency selection configurations:
SWITCHING
FREQUENCY
SYNC PIN
RT PIN
350 kHz, internally set
Float or AGND
Float
550 kHz, internally set
≥ 2.5 V
Float
Externally set 280 kHz
to 700 kHz
Float
R = 180 k to 68 k
Externally
synchronized
frequency
Synchronization
signal
R = RT value for 80%
of external synchro-
nization frequency
ERROR AMPLIFIER
The high performance, wide bandwidth, voltage error
amplifier sets the TPS54873 apart from most dc/dc
converters. The user is given the flexibility to use a wide
range of output L and C filter components to suit the
particular application needs. Type 2 or type 3
compensation can be employed using external
compensation components.
PWM CONTROL
Signals from the error amplifier output, oscillator, and
current limit circuit are processed by the PWM control
logic. Referring to the internal block diagram, the control
logic includes the PWM comparator, OR gate, PWM latch,
and portions of the adaptive dead-time and control logic
block. During steady-state operation below the current
limit threshold, the PWM comparator output and oscillator
pulse train alternately reset and set the PWM latch. Once
the PWM latch is reset, the low-side FET remains on for a
minimum duration set by the oscillator pulse width. During
this period, the PWM ramp discharges rapidly to its valley
voltage. When the ramp begins to charge back up, the
low-side FET turns off and high-side FET turns on. As the
PWM ramp voltage exceeds the error amplifier output
voltage, the PWM comparator resets the latch, thus
turning off the high-side FET and turning on the low-side
FET. The low-side FET remains on until the next oscillator
pulse discharges the PWM ramp.
During transient conditions, the error amplifier output
could be below the PWM ramp valley voltage or above the
PWM peak voltage. If the error amplifier is high, the PWM
latch is never reset, and the high-side FET remains on until
the oscillator pulse signals the control logic to turn the
high-side FET off and the low-side FET on. The device
operates at its maximum duty cycle until the output voltage
rises to the regulation set-point, setting VSENSE to
approximately the same voltage as VREF. If the error
amplifier output is low, the PWM latch is continually reset
and the high-side FET does not turn on. The low-side FET
remains on until the VSENSE voltage decreases to a
range that allows the PWM comparator to change states.
The TPS54873 is capable of sinking current continuously
until the output reaches the regulation set-point.
If the current limit comparator trips for longer than 100 ns,
the PWM latch resets before the PWM ramp exceeds the
error amplifier output. The high-side FET turns off and
low-side FET turns on to decrease the energy in the output
inductor and consequently the output current. This
process is repeated each cycle in which the current limit
comparator is tripped.
DEAD-TIME CONTROL AND MOSFET
DRIVERS
Adaptive dead-time control prevents shoot-through
current from flowing in both N-channel power MOSFETs
during the switching transitions by actively controlling the
turnon times of the MOSFET drivers. The high-side driver
does not turn on until the voltage at the gate of the low-side
FET is below 2 V. While the low-side driver does not turn
on until the voltage at the gate of the high-side MOSFET
is below 2 V.
The high-side and low-side drivers are designed with
300-mA source and sink capability to quickly drive the
power MOSFETs gates. The low-side driver is supplied
from VIN, while the high-side drive is supplied from the
BOOT pin. A bootstrap circuit uses an external BOOT
capacitor and an internal 2.5- bootstrap switch
connected between the VIN and BOOT pins. The
integrated bootstrap switch improves drive efficiency and
reduces external component count.
OVERCURRENT PROTECTION
The cycle-by-cycle current limiting is achieved by sensing
the current flowing through the high-side MOSFET and
comparing this signal to a preset overcurrent threshold.
The high side MOSFET is turned off within 200 ns of
reaching the current limit threshold. A 100-ns leading edge
blanking circuit prevents current limit false tripping.
Current limit detection occurs only when current flows from
VIN to PH when sourcing current to the output filter. Load
protection during current sink operation is provided by
thermal shutdown.
(4)