參數(shù)資料
型號(hào): TNY265PG
廠商: POWER INTEGRATIONS INC
元件分類: 穩(wěn)壓器
英文描述: 0.44 A SWITCHING REGULATOR, 140 kHz SWITCHING FREQ-MAX, PDIP7
封裝: 0.300 INCH, LEAD FREE, PLASTIC, MS-001-AB, DIP-8
文件頁(yè)數(shù): 3/22頁(yè)
文件大?。?/td> 760K
代理商: TNY265PG
Rev. H 02/09
11
TNY263-268
www.powerint.com
core size and design (continuous or discontinuous), efciency,
minimum specied input voltage, input storage capacitance,
output voltage, output diode forward drop, etc., and can be
different from the values shown in Table 1.
Audible Noise
The TinySwitch-II practically eliminates any transformer audio
noise using simple ordinary varnished transformer construction.
No gluing of the cores is needed. The audio noise reduction is
accomplished by the TinySwitch-II controller reducing the
current limit in discrete steps as the load is reduced. This
minimizes the ux density in the transformer when switching at
audio frequencies.
Worst Case EMI & Efciency Measurement
Since identical TinySwitch-II supplies may operate at several
different frequencies under the same load and line conditions,
care must be taken to ensure that measurements are made
under worst case conditions. When measuring efciency or
EMI verify that the TinySwitch-II is operating at maximum
frequency and that measurements are made at both low and
high line input voltages to ensure the worst case result is
obtained.
Layout
Single Point Grounding
Use a single point ground connection at the SOURCE pin for
the BYPASS pin capacitor and the Input Filter Capacitor
(see Figure 17).
Primary Loop Area
The area of the primary loop that connects the input lter
capacitor, transformer primary and TinySwitch-II together
should be kept as small as possible.
Primary Clamp Circuit
A clamp is used to limit peak voltage on the DRAIN pin at turn-
off. This can be achieved by using an RCD clamp (as shown
in Figure 14). A Zener and diode clamp (200 V) across the
primary or a single 550 V Zener clamp from DRAIN to
SOURCE can also be used. In all cases care should be taken
to minimize the circuit path from the clamp components to the
transformer and TinySwitch-II.
Thermal Considerations
Copper underneath the TinySwitch-II acts not only as a single
point ground, but also as a heatsink. The hatched areas
shown in Figure 17 should be maximized for good heat sinking
of TinySwitch-II and the same applies to the output diode.
EN/UV pin
If a line undervoltage detect resistor is used then the resistor
should be mounted as close as possible to the EN/UV pin to
minimize noise pick up.
The voltage rating of a resistor should be considered for the
undervoltage detect (Figure 15: R2, R3) resistors. For 1/4 W
resistors, the voltage rating is typically 200 V continuous,
whereas for 1/2 W resistors the rating is typically 400 V
continuous.
Y-Capacitor
The placement of the Y-capacitor should be directly from the
primary bulk capacitor positive rail to the common/return
terminal on the secondary side. Such placement will maximize
the EMI benet of the Y-capacitor and avoid problems in
common-mode surge testing.
Optocoupler
It is important to maintain the minimum circuit path from the
optocoupler transistor to the TinySwitch-II EN/UV and
SOURCE pins to minimize noise coupling.
The EN/UV pin connection to the optocoupler should be kept
to an absolute minimum (less than 12.7 mm or 0.5 in.), and
this connection should be kept away from the DRAIN pin
(minimum of 5.1 mm or 0.2 in.).
Output Diode
For best performance, the area of the loop connecting the
secondary winding, the output diode and the output lter
capacitor, should be minimized. See Figure 17 for optimized
layout. In addition, sufcient copper area should be provided
at the anode and cathode terminals of the diode for adequate
heatsinking.
Input and Output Filter Capacitors
There are constrictions in the traces connected to the input
and output lter capacitors. These constrictions are present
for two reasons. The rst is to force all the high frequency
currents to ow through the capacitor (if the trace were wide
then it could ow around the capacitor). Secondly, the
Constrictions minimize the heat transferred from the TinySwitch-II
to the input lter capacitor and from the secondary diode to
the output lter capacitor. The common/return (the negative
output terminal in Figure 17) terminal of the output lter
capacitor should be connected with a short, low impedance
path to the secondary winding. In addition, the common/
return output connection should be taken directly from the
secondary winding pin and not from the Y-capacitor
connection point.
PC Board Cleaning
Power Integrations does not recommend the use of “no clean”
ux.
For the most up-to-date information visit the PI website
at: www.powerint.com.
相關(guān)PDF資料
PDF描述
TNY277PG 0.481 A SWITCHING REGULATOR, PDIP7
TNY279PG 0.695 A SWITCHING REGULATOR, PDIP7
TNY376GN 0.496 A SWITCHING REGULATOR, 280 kHz SWITCHING FREQ-MAX, PDSO7
TNY378GN-TL 0.779 A SWITCHING REGULATOR, 280 kHz SWITCHING FREQ-MAX, PDSO7
TNY379GN-TL 0.921 A SWITCHING REGULATOR, 280 kHz SWITCHING FREQ-MAX, PDSO7
相關(guān)代理商/技術(shù)參數(shù)
參數(shù)描述
TNY265PN 功能描述:交流/直流開關(guān)轉(zhuǎn)換器 7.5W 85-265 VAC 11W/230 VAC RoHS:否 制造商:STMicroelectronics 輸出電壓:800 V 輸入/電源電壓(最大值):23.5 V 輸入/電源電壓(最小值):11.5 V 開關(guān)頻率:115 kHz 電源電流:1.6 mA 工作溫度范圍:- 40 C to + 150 C 安裝風(fēng)格:SMD/SMT 封裝 / 箱體:SSO-10 封裝:Reel
TNY265PN-TL 制造商:POWERINT 制造商全稱:Power Integrations, Inc. 功能描述:Enhanced, Energy Efficient, Low Power Off-line Switcher
TNY265PTL 制造商:POWERINT 制造商全稱:Power Integrations, Inc. 功能描述:Enhanced, Energy Efficient, Low Power Off-line Switcher
TNY266 制造商:POWERINT 制造商全稱:Power Integrations, Inc. 功能描述:Generic PCB for DVD Player using TinySwitch-II
TNY266G 功能描述:IC OFFLINE SWIT OTP OCP HV 8SMD RoHS:否 類別:集成電路 (IC) >> PMIC - AC-DC 轉(zhuǎn)換器,離線開關(guān) 系列:TinySwitch®-II 標(biāo)準(zhǔn)包裝:1 系列:FPS™ 輸出隔離:隔離 頻率范圍:61kHz ~ 73kHz 輸入電壓:8 V ~ 26 V 輸出電壓:650V 功率(瓦特):12W 工作溫度:-40°C ~ 115°C 封裝/外殼:8-DIP(0.300",7.62mm) 供應(yīng)商設(shè)備封裝:8-MDIP 包裝:Digi-Reel® 其它名稱:FSL206MRBNFSDKR