TAS5152
SLES127A FEBRUARY 2005 REVISED NOVEMBER 2005
www.ti.com
21
ERROR REPORTING
The SD and OTW pins are both active-low, open-drain
outputs. Their function is for protection-mode signaling to
a PWM controller or other system-control device.
Any fault resulting in device shutdown is signaled by the
SD pin going low. Likewise, OTW goes low when the
device junction temperature exceeds 125
°C (see the
following table).
SD
OTW
DESCRIPTION
0
Overtemperature (OTE) or overload (OLP) or
undervoltage (UVP)
0
1
Overload (OLP) or undervoltage (UVP)
1
0
Junction temperature higher than 125
°C
(overtemperature warning)
1
Junction temperature lower than 125
°C and no
OLP or UVP faults (normal operation)
Note that asserting either RESET_AB or RESET_CD low
forces the SD signal high, independent of faults being
present. TI recommends monitoring the OTW signal using
the system microcontroller and responding to an
overtemperature warning signal by, e.g., turning down the
volume to prevent further heating of the device resulting in
device shutdown (OTE).
To reduce external component count, an internal pullup
resistor to 3.3 V is provided on both SD and OTW outputs.
Level compliance for 5-V logic can be obtained by adding
external pullup resistors to 5 V (see the Electrical
Characteristics section of this data sheet for further
specifications).
DEVICE PROTECTION SYSTEM
TAS5152 contains advanced protection circuitry carefully
designed to facilitate system integration and ease of use,
as well as to safeguard the device from permanent failure
due to a wide range of fault conditions such as short
circuits, overload, overtemperature, and undervoltage.
The TAS5152 responds to a fault by immediately setting
the power stage in a high-impedance state (Hi-Z) and
asserting the SD pin low. In situations other than overload,
the device automatically recovers when the fault condition
has been removed, i.e., the junction temperature has
dropped or the voltage supply has increased. For highest
possible reliability, recovering from an overload fault
requires external reset of the device (see the Device Reset
section of this data sheet) no sooner than 1 second after
the shutdown.
Use of TAS5152 in High-Modulation-Index
Capable Systems
This device requires at least 50 ns of low time on the output
per 384-kHz PWM frame rate in order to keep the
bootstrap capacitors charged. As an example, if the
modulation index is set to 99.2% in the TAS5508, this
setting allows PWM pulse durations down to 20 ns. This
signal, which does not meet the 50-ns requirement, is sent
to the PWM_x pin and this low-state pulse time does not
allow the bootstrap capacitor to stay charged. In this
situation, the low voltage across the bootstrap capacitor
can cause a failure of the high-side MOSFET transistor,
especially when driving a low-impedance load. The
TAS5152 device requires limiting the TAS5508 modulation
index to 96.1% to keep the bootstrap capacitor charged
under all signals and loads.
Therefore, TI strongly recommends using a TI PWM
processor, such as TAS5508 or TAS5086, with the
modulation index set at 96.1% to interface with TAS5152.
Overcurrent (OC) Protection With Current
Limiting and Overload Detection
The device has independent, fast-reacting current
detectors with programmable trip threshold (OC threshold)
on all high-side and low-side power-stage FETs. See the
following table for OC-adjust resistor values. The detector
outputs are closely monitored by two protection systems.
The first protection system controls the power stage in
order to prevent the output current from further increasing,
i.e., it performs a current-limiting function rather than
prematurely shutting down during combinations of
high-level music transients and extreme speaker load
impedance drops. If the high-current situation persists,
i.e., the power stage is being overloaded, a second
protection system triggers a latching shutdown, resulting
in the power stage being set in the high-impedance (Hi-Z)
state. Current limiting and overload protection are
independent for the half-bridges A and B and, respectively,
C and D. That is, if the bridge-tied load between
half-bridges A and B causes an overload fault, only
half-bridges A and B are shut down.
D For the lowest-cost bill of materials in terms
of component selection, the OC threshold
measure should be limited, considering the
power output requirement and minimum
load impedance. Higher-impedance loads
require a lower OC threshold.
D The demodulation-filter inductor must retain
at least 3
H of inductance at twice the OC
threshold setting.