參數(shù)資料
型號: SST39WF800A-90-4I-Y1KE
廠商: Silicon Storage Technology, Inc.
元件分類: FLASH
英文描述: 64 Mbit (x16) Multi-Purpose Flash Plus
中文描述: 64兆位(x16)的多功能閃存加
文件頁數(shù): 2/27頁
文件大?。?/td> 572K
代理商: SST39WF800A-90-4I-Y1KE
2
Data Sheet
8 Mbit Multi-Purpose Flash
SST39WF800A
2006 Silicon Storage Technology, Inc.
S71258-06-000
07/07
Device Operation
Commands are used to initiate the memory operation func-
tions of the device. Commands are written to the device
using standard microprocessor write sequences. A com-
mand is written by asserting WE# low while keeping CE#
low. The address bus is latched on the falling edge of WE#
or CE#, whichever occurs last. The data bus is latched on
the rising edge of WE# or CE#, whichever occurs first.
Read
The Read operation of the SST39WF800A is controlled by
CE# and OE#, both have to be low for the system to obtain
data from the outputs. CE# is used for device selection.
When CE# is high, the chip is deselected and only standby
power is consumed. OE# is the output control and is used
to gate data from the output pins. The data bus is in high
impedance state when either CE# or OE# is high. Refer to
the Read cycle timing diagram for further details (Figure 4).
Word-Program Operation
The SST39WF800A is programmed on a word-by-word
basis. Before programming, the sector where the word
exists must be fully erased. The Program operation is
accomplished in three steps. The first step is the three-byte
load sequence for Software Data Protection. The second
step is to load word address and word data. During the
Word-Program operation, the addresses are latched on the
falling edge of either CE# or WE#, whichever occurs last.
The data is latched on the rising edge of either CE# or
WE#, whichever occurs first. The third step is the internal
Program operation which is initiated after the rising edge of
the fourth WE# or CE#, whichever occurs first. The Pro-
gram operation, once initiated, will be completed within 40
μs. See Figures 5 and 6 for WE# and CE# controlled Pro-
gram operation timing diagrams and Figure 17 for flow-
charts. During the Program operation, the only valid reads
are Data# Polling and Toggle Bit. During the internal Pro-
gram operation, the host is free to perform additional tasks.
Any commands issued during the internal Program opera-
tion are ignored.
Sector/Block-Erase Operation
The Sector- (or Block-) Erase operation allows the system
to erase the device on a sector-by-sector (or block-by-
block) basis. The SST39WF800A offers both Sector-Erase
and Block-Erase mode. The sector architecture is based
on uniform sector size of 2 KWord. The Block-Erase mode
is based on uniform block size of 32 KWord. The Sector-
Erase operation is initiated by executing a six-byte com-
mand sequence with Sector-Erase command (30H) and
sector address (SA) in the last bus cycle. The Block-Erase
operation is initiated by executing a six-byte command
sequence with Block-Erase command (50H) and block
address (BA) in the last bus cycle. The sector or block
address is latched on the falling edge of the sixth WE#
pulse, while the command (30H or 50H) is latched on the
rising edge of the sixth WE# pulse. The internal Erase
operation begins after the sixth WE# pulse. The End-of-
Erase operation can be determined using either Data#
Polling or Toggle Bit methods. See Figures 10 and 11 for
timing waveforms. Any commands issued during the Sec-
tor- or Block-Erase operation are ignored.
Chip-Erase Operation
The SST39WF800A provides a Chip-Erase operation,
which allows the user to erase the entire memory array to
the ‘1’ state. This is useful when the entire device must be
quickly erased.
The Chip-Erase operation is initiated by executing a six-
byte command sequence with Chip-Erase command (10H)
at address 5555H in the last byte sequence. The Erase
operation begins with the rising edge of the sixth WE# or
CE#, whichever occurs first. During the Erase operation,
the only valid read is Toggle Bit or Data# Polling. See Table
4 for the command sequence, Figure 9 for timing diagram,
and Figure 20 for the flowchart. Any commands issued dur-
ing the Chip-Erase operation are ignored.
相關(guān)PDF資料
PDF描述
SST39WF800A-90-4I-Y1QE 64 Mbit (x16) Multi-Purpose Flash Plus
SST39WF800A-90-4C-B3KE 64 Mbit (x16) Multi-Purpose Flash Plus
SST39WF800A-90-4C-B3QE 64 Mbit (x16) Multi-Purpose Flash Plus
SST39WF800A-90-4C-C2KE 64 Mbit (x16) Multi-Purpose Flash Plus
SST39WF800A-90-4C-C2QE 64 Mbit (x16) Multi-Purpose Flash Plus
相關(guān)代理商/技術(shù)參數(shù)
參數(shù)描述
SST39WF800B-70-4C-B3KE 功能描述:閃存 8M (512Kx16) 70ns 1.65-1.95V Comm RoHS:否 制造商:ON Semiconductor 數(shù)據(jù)總線寬度:1 bit 存儲類型:Flash 存儲容量:2 MB 結(jié)構(gòu):256 K x 8 定時類型: 接口類型:SPI 訪問時間: 電源電壓-最大:3.6 V 電源電壓-最小:2.3 V 最大工作電流:15 mA 工作溫度:- 40 C to + 85 C 安裝風(fēng)格:SMD/SMT 封裝 / 箱體: 封裝:Reel
SST39WF800B-70-4C-C2QE 功能描述:閃存 8M (512Kx16) 70ns Commercial Temp RoHS:否 制造商:ON Semiconductor 數(shù)據(jù)總線寬度:1 bit 存儲類型:Flash 存儲容量:2 MB 結(jié)構(gòu):256 K x 8 定時類型: 接口類型:SPI 訪問時間: 電源電壓-最大:3.6 V 電源電壓-最小:2.3 V 最大工作電流:15 mA 工作溫度:- 40 C to + 85 C 安裝風(fēng)格:SMD/SMT 封裝 / 箱體: 封裝:Reel
SST39WF800B-70-4C-EKE 功能描述:閃存 1.65 to 1.95V 8Mbit Multi-Purpose 閃存 RoHS:否 制造商:ON Semiconductor 數(shù)據(jù)總線寬度:1 bit 存儲類型:Flash 存儲容量:2 MB 結(jié)構(gòu):256 K x 8 定時類型: 接口類型:SPI 訪問時間: 電源電壓-最大:3.6 V 電源電壓-最小:2.3 V 最大工作電流:15 mA 工作溫度:- 40 C to + 85 C 安裝風(fēng)格:SMD/SMT 封裝 / 箱體: 封裝:Reel
SST39WF800B-70-4C-MAQE 功能描述:閃存 8M (512Kx16) 70ns 1.65-1.95V Comm RoHS:否 制造商:ON Semiconductor 數(shù)據(jù)總線寬度:1 bit 存儲類型:Flash 存儲容量:2 MB 結(jié)構(gòu):256 K x 8 定時類型: 接口類型:SPI 訪問時間: 電源電壓-最大:3.6 V 電源電壓-最小:2.3 V 最大工作電流:15 mA 工作溫度:- 40 C to + 85 C 安裝風(fēng)格:SMD/SMT 封裝 / 箱體: 封裝:Reel
SST39WF800B-70-4C-Y1QE 功能描述:閃存 8M (512Kx16) 70ns 1.65-1.95V Comm RoHS:否 制造商:ON Semiconductor 數(shù)據(jù)總線寬度:1 bit 存儲類型:Flash 存儲容量:2 MB 結(jié)構(gòu):256 K x 8 定時類型: 接口類型:SPI 訪問時間: 電源電壓-最大:3.6 V 電源電壓-最小:2.3 V 最大工作電流:15 mA 工作溫度:- 40 C to + 85 C 安裝風(fēng)格:SMD/SMT 封裝 / 箱體: 封裝:Reel