Serial Peripheral Interface (S08SPIV3)
MC9S08EL32 Series and MC9S08SL16 Series Data Sheet, Rev. 3
244
Freescale Semiconductor
13.5
Functional Description
An SPI transfer is initiated by checking for the SPI transmit buffer empty flag (SPTEF = 1) and then
writing a byte of data to the SPI data register (SPID) in the master SPI device. When the SPI shift register
is available, this byte of data is moved from the transmit data buffer to the shifter, SPTEF is set to indicate
there is room in the buffer to queue another transmit character if desired, and the SPI serial transfer starts.
During the SPI transfer, data is sampled (read) on the MISO pin at one SPSCK edge and shifted, changing
the bit value on the MOSI pin, one-half SPSCK cycle later. After eight SPSCK cycles, the data that was
in the shift register of the master has been shifted out the MOSI pin to the slave while eight bits of data
were shifted in the MISO pin into the master’s shift register. At the end of this transfer, the received data
byte is moved from the shifter into the receive data buffer and SPRF is set to indicate the data can be read
by reading SPID. If another byte of data is waiting in the transmit buffer at the end of a transfer, it is moved
into the shifter, SPTEF is set, and a new transfer is started.
Normally, SPI data is transferred most significant bit (MSB) first. If the least significant bit first enable
(LSBFE) bit is set, SPI data is shifted LSB first.
When the SPI is configured as a slave, its SS pin must be driven low before a transfer starts and SS must
stay low throughout the transfer. If a clock format where CPHA = 0 is selected, SS must be driven to a
logic 1 between successive transfers. If CPHA = 1, SS may remain low between successive transfers. See
Because the transmitter and receiver are double buffered, a second byte, in addition to the byte currently
being shifted out, can be queued into the transmit data buffer, and a previously received character can be
in the receive data buffer while a new character is being shifted in. The SPTEF flag indicates when the
transmit buffer has room for a new character. The SPRF flag indicates when a received character is
available in the receive data buffer. The received character must be read out of the receive buffer (read
SPID) before the next transfer is finished or a receive overrun error results.
In the case of a receive overrun, the new data is lost because the receive buffer still held the previous
character and was not ready to accept the new data. There is no indication for such an overrun condition
so the application system designer must ensure that previous data has been read from the receive buffer
before a new transfer is initiated.
13.5.1
SPI Clock Formats
To accommodate a wide variety of synchronous serial peripherals from different manufacturers, the SPI
system has a clock polarity (CPOL) bit and a clock phase (CPHA) control bit to select one of four clock
formats for data transfers. CPOL selectively inserts an inverter in series with the clock. CPHA chooses
between two different clock phase relationships between the clock and data.
Figure 13-10 shows the clock formats when CPHA = 1. At the top of the figure, the eight bit times are
shown for reference with bit 1 starting at the first SPSCK edge and bit 8 ending one-half SPSCK cycle
after the sixteenth SPSCK edge. The MSB first and LSB first lines show the order of SPI data bits
depending on the setting in LSBFE. Both variations of SPSCK polarity are shown, but only one of these
waveforms applies for a specific transfer, depending on the value in CPOL. The SAMPLE IN waveform
applies to the MOSI input of a slave or the MISO input of a master. The MOSI waveform applies to the