![](http://datasheet.mmic.net.cn/300000/RT9166_datasheet_16207991/RT9166_9.png)
Preliminary
RT9166/A
DS9166A-03 July 2003
www.richtek.com
9
Aluminum electrolytics also typically have large
temperature variation of capacitance value.
Equally important to consider is a capacitor’s ESR
change with temperature: this is not an issue with
ceramics, as their ESR is extremely low. However, it
is very important in Tantalum and aluminum
electrolytic capacitors. Both show increasing ESR at
colder temperatures, but the increase in aluminum
electrolytic capacitors is so severe they may not be
feasible for some applications.
Ceramic:
For values of capacitance in the 10
μ
F to 100μF
range, ceramics are usually larger and more costly
than tantalums but give superior AC performance for
by-passing high frequency noise because of very low
ESR (typically less than 10m
). However, some
dielectric types do not have good capacitance
characteristics as a function of voltage and
temperature.
Z5U and Y5V dielectric ceramics have capacitance
that drops severely with applied voltage. A typical
Z5U or Y5V capacitor can lose 60% of its rated
capacitance with half of the rated voltage applied to it.
The Z5U and Y5V also exhibit a severe temperature
effect, losing more than 50% of nominal capacitance
at high and low limits of the temperature range.
X7R and X5R dielectric ceramic capacitors are
strongly recommended if ceramics are used, as they
typically maintain a capacitance range within ±20% of
nominal over full operating ratings of temperature
and voltage. Of course, they are typically larger and
more costly than Z5U/Y5U types for a given voltage
and capacitance.
Tantalum:
Solid tantalum capacitors are recommended for use
on the output because their typical ESR is very close
to the ideal value required for loop compensation.
They also work well as input capacitors if selected to
meet the ESR requirements previously listed.
Tantalums also have good temperature stability: a
good quality tantalum will typically show a
capacitance value that varies less than 10~15%
across the full temperature range of 125°C to
40°C.
ESR will vary only about 2X going from the high to
low temperature limits.
The increasing ESR at lower temperatures can cause
oscillations when marginal quality capacitors are
used (if the ESR of the capacitor is near the upper
limit of the stability range at room temperature).
Aluminum:
This capacitor type offers the most capacitance for
the money. The disadvantages are that they are
larger in physical size, not widely available in surface
mount, and have poor AC performance (especially at
higher frequencies) due to higher ESR and ESL.
Compared by size, the ESR of an aluminum
electrolytic is higher than either Tantalum or ceramic,
and it also varies greatly with temperature. A typical
aluminum electrolytic can exhibit an ESR increase of
as much as 50X when going from 25°C down to
40°C.
It should also be noted that many aluminum
electrolytics only specify impedance at a frequency of
120Hz, which indicates they have poor high
frequency performance. Only aluminum electrolytics
that have an impedance specified at a higher
frequency (between 20kHz and 100kHz) should be
used for the device. Derating must be applied to the
manufacturer’s ESR specification, since it is typically
only valid at room temperature.
Any applications using aluminum electrolytics should
be thoroughly tested at the lowest ambient operating
temperature where ESR is maximum.