217
2513L–AVR–03/2013
ATmega162/V
Boot Loader
Support – Read-
While-Write
Self-
programming
The Boot Loader Support provides a real Read-While-Write Self-programming mechanism for
downloading and uploading program code by the MCU itself. This feature allows flexible applica-
tion software updates controlled by the MCU using a Flash-resident Boot Loader program. The
Boot Loader program can use any available data interface and associated protocol to read code
and write (program) that code into the Flash memory, or read the code from the program mem-
ory. The program code within the Boot Loader section has the capability to write into the entire
Flash, including the Boot Loader memory. The Boot Loader can thus even modify itself, and it
can also erase itself from the code if the feature is not needed anymore. The size of the Boot
Loader memory is configurable with Fuses and the Boot Loader has two separate sets of Boot
Lock bits which can be set independently. This gives the user a unique flexibility to select differ-
ent levels of protection.
Features
Read-While-Write Self-programming
Flexible Boot Memory Size
High Security (Separate Boot Lock Bits for a Flexible Protection)
Separate Fuse to Select Reset Vector
Code Efficient Algorithm
Efficient Read-Modify-Write Support
Note:
during programming. The page organization does not affect normal operation.
Application and
Boot Loader Flash
Sections
The Flash memory is organized in two main sections, the Application section and the Boot
Loader section (see
Figure 94). The size of the different sections is configured by the BOOTSZ
level of protection since they have different sets of Lock bits.
Application Section
The Application section is the section of the Flash that is used for storing the application code.
The protection level for the application section can be selected by the Application Boot Lock bits
Loader code since the SPM instruction is disabled when executed from the Application section.
BLS – Boot Loader
Section
While the Application section is used for storing the application code, the The Boot Loader soft-
ware must be located in the BLS since the SPM instruction can initiate a programming when
executing from the BLS only. The SPM instruction can access the entire Flash, including the
BLS itself. The protection level for the Boot Loader section can be selected by the Boot Loader
Read-While-Write
and No Read-
While-Write Flash
Sections
Whether the CPU supports Read-While-Write or if the CPU is halted during a Boot Loader soft-
ware update is dependent on which address that is being programmed. In addition to the two
sections that are configurable by the BOOTSZ Fuses as described above, the Flash is also
divided into two fixed sections, the Read-While-Write (RWW) section and the No Read-While-
Write (NRWW) section. The limit between the RWW- and NRWW sections is given in
Table 94When erasing or writing a page located inside the RWW section, the NRWW section can be
read during the operation.
When erasing or writing a page located inside the NRWW section, the CPU is halted during
the entire operation.
Note that the user software can never read any code that is located inside the RWW section dur-
ing a Boot Loader software operation. The syntax “Read-While-Write section” refers to which
section that is being programmed (erased or written), not which section that actually is being
read during a Boot Loader software update.