
V
I
GND
PTH08T250W
6
7
8
9
12
13
GND
C
I
+
UDG-07104
14
15
V
I
V
I
V
I
GND
V
I
21
Inhibit/UVLO
Q1
BSS 138
1=Inhibit
t Time 20 ms/div
VO
(500 mV/div)
VINH
(2 V/div)
II
(5 A/div)
SLTS278G – NOVEMBER 2010 – REVISED MARCH 2009
www.ti.com
On/Off Inhibit
For applications requiring output voltage on/off control, the PTH08T250W incorporates an Inhibit control pin. The
inhibit feature can be used wherever there is a requirement for the output voltage from the regulator to be turned
off. The power modules function normally when the Inhibit pin is left open-circuit, providing a regulated output
whenever a valid source voltage is connected to VI with respect to GND.
Figure 19 shows the typical application of the inhibit function. Note the discrete transistor (Q1). The Inhibit input
has its own internal pull-up. An external pull-up resistor should never be used with the inhibit pin. The input is not
compatible with TTL logic devices. An open-collector (or open-drain) discrete transistor is recommended for
control.
Turning Q1 on applies a low voltage to the Inhibit control pin and disables the output of the module. If Q1 is then
turned off, the module executes a soft-start power-up sequence. A regulated output voltage is produced within 20
ms.
Figure 20 shows the typical rise in both the output voltage and input current, following the turn-off of Q1. The
turn off of Q1 corresponds to the rise in the waveform, VINH. The waveforms were measured with a 25-A constant
current load.
Figure 19. On/Off Inhibit Control Circuit
Figure 20. Power-Up Response from Inhibit Control
Overcurrent Protection
For protection against load faults, all modules incorporate output overcurrent protection. Applying a load that
exceeds the regulator's overcurrent threshold causes the regulated output to shut down. Following shutdown, the
module periodically attempts to recover by initiating a soft-start power-up. This is described as a hiccup mode of
operation, whereby the module continues in a cycle of successive shutdown and power up until the load fault is
removed. During this period, the average current flowing into the fault is significantly reduced. Once the fault is
removed, the module automatically recovers and returns to normal operation.
Overtemperature Protection (OTP)
A thermal shutdown mechanism protects the module’s internal circuitry against excessively high temperatures. A
rise in the internal temperature may be the result of a drop in airflow, or a high ambient temperature. If the
internal temperature exceeds the OTP threshold, the module’s Inhibit control is internally pulled low. This turns
the output off. The output voltage drops as the external output capacitors are discharged by the load circuit. The
recovery is automatic, and begins with a soft-start power up. It occurs when the sensed temperature decreases
by about 10°C below the trip point.
The overtemperature protection is a last resort mechanism to prevent thermal stress to the regulator.
Operation at or close to the thermal shutdown temperature is not recommended and reduces the long-term
reliability of the module. Always operate the regulator within the specified safe operating area (SOA) limits for
the worst-case conditions of ambient temperature and airflow.
20
Copyright 2010–2009, Texas Instruments Incorporated