and VIN swings up to 5 V, the outpu" />
參數(shù)資料
型號(hào): OP462HRUZ-REEL
廠商: Analog Devices Inc
文件頁(yè)數(shù): 5/20頁(yè)
文件大小: 0K
描述: IC OPAMP QUAD R-R 15MHZ 14-TSSOP
標(biāo)準(zhǔn)包裝: 1
放大器類(lèi)型: 通用
電路數(shù): 4
輸出類(lèi)型: 滿擺幅
轉(zhuǎn)換速率: 13 V/µs
增益帶寬積: 15MHz
電流 - 輸入偏壓: 260nA
電壓 - 輸入偏移: 25µV
電流 - 電源: 550µA
電流 - 輸出 / 通道: 30mA
電壓 - 電源,單路/雙路(±): 2.7 V ~ 12 V,±1.35 V ~ 6 V
工作溫度: -40°C ~ 125°C
安裝類(lèi)型: 表面貼裝
封裝/外殼: 14-TSSOP(0.173",4.40mm 寬)
供應(yīng)商設(shè)備封裝: 14-TSSOP
包裝: 標(biāo)準(zhǔn)包裝
產(chǎn)品目錄頁(yè)面: 768 (CN2011-ZH PDF)
其它名稱(chēng): OP462HRUZ-REELDKR
Data Sheet
OP162/OP262/OP462
Rev. H | Page 13 of 20
and VIN swings up to 5 V, the output current will not exceed
30 mA. For single 5 V supply applications, resistors less than
169 are not recommended.
Figure 32. Output Short-Circuit Protection
INPUT OVERVOLTAGE PROTECTION
The input voltage should be limited to ±6 V, or damage to the
device can occur. Electrostatic protection diodes placed in the
input stage of the device help protect the amplifier from static
discharge. Diodes are connected between each input as well as
from each input to both supply pins as shown in the simplified
equivalent circuit in Figure 30. If an input voltage exceeds either
supply voltage by more than 0.6 V, or if the differential input
voltage is greater than 0.6 V, these diodes energize causing
overvoltage damage.
The input current should be limited to less than 5 mA to
prevent degradation or destruction of the device by placing an
external resistor in series with the input at risk of being overdriven.
The size of the resistor can be calculated by dividing the maxi-
mum input voltage by 5 mA. For example, if the differential
input voltage could reach 5 V, the external resistor should be
5 V/5 mA = 1 k. In practice, this resistor should be placed in
series with both inputs to balance any offset voltages created by
the input bias current.
OUTPUT PHASE REVERSAL
The OP162/OP262/OP462 are immune to phase reversal as
long as the input voltage is limited to ±6 V. Figure 27 shows the
output of a device with the input voltage driven beyond the
supply voltages. Although the device’s output does not change
phase, large currents due to input overvoltage could result,
damaging the device. In applications where the possibility of an
input voltage exceeding the supply voltage exists, overvoltage
protection should be used, as described in the previous section.
POWER DISSIPATION
The maximum power that can be safely dissipated by the
OP162/OP262/OP462 is limited by the associated rise in
junction temperature. The maximum safe junction temperature
is 150°C; device performance suffers when this limit is
exceeded. If this maximum is only momentarily exceeded,
proper circuit operation will be restored as soon as the die
temperature is reduced. Leaving the device in an “overheated”
condition for an extended period can result in permanent
damage to the device.
To calculate the internal junction temperature of the OPx62, use
the formula
TJ = PDISS × θJA + TA
where:
TJ is the OPx62 junction temperature.
PDISS is the OPx62 power dissipation.
θJA is the OPx62 package thermal resistance, junction-to-
ambient temperature.
TA is the ambient temperature of the circuit.
The power dissipated by the device can be calculated as
PDISS = ILOAD × (VS – VOUT)
where:
ILOAD is the OPx62 output load current.
VS is the OPx62 supply voltage.
VOUT is the OPx62 output voltage.
Figure 33 and Figure 34 provide a convenient way to determine
if the device is being overheated. The maximum safe power
dissipation can be found graphically, based on the package type
and the ambient temperature around the package. By using the
previous equation, it is a simple matter to see if PDISS exceeds the
device’s power derating curve. To ensure proper operation, it is
important to observe the recommended derating curves shown
Figure 33. Maximum Power Dissipation vs. Temperature for
8-Lead Package Types
OPx62
VIN
VOUT
169
5V
00288-035
AMBIENT TEMPERATURE (
°C)
MAXIMUM
POWER
DISSIPATION
(Watts)
0.9
0.7
0.8
0.5
0.6
0.1
0.2
0.3
0.4
0
20
40
60
100
80
120
00288-036
8-LEAD SOIC
8-LEAD MSOP
8-LEAD TSSOP
相關(guān)PDF資料
PDF描述
4715KL-05W-B59-R50 FAN DC AXIAL 24V 119X38.4MM TAC
AWHW26G-0102-T-R CONN HEADER LOW-PRO 26POS 30AU
4715KL-05W-B59-R00 FAN DC AXIAL 24V 119X38.4MM LRTR
4715KL-05W-B59-P50 FAN DC AXIAL 24V 119X38.4MM TAC
4715KL-05W-B49-P50 FAN DC AXIAL 24V 119X38.4MM TAC
相關(guān)代理商/技術(shù)參數(shù)
參數(shù)描述
OP467 制造商:AD 制造商全稱(chēng):Analog Devices 功能描述:Quad Precision, High Speed Operational Amplifier
OP467_07 制造商:AD 制造商全稱(chēng):Analog Devices 功能描述:Quad Precision, High Speed Operational Amplifier
OP467ARC/883 制造商:AD 制造商全稱(chēng):Analog Devices 功能描述:Quad Precision, High Speed Operational Amplifier
OP467ARC/883C 制造商:Analog Devices 功能描述:OP Amp Quad GP ±18V 20-Pin LCC 制造商:Analog Devices 功能描述:HI SPEED QUAD OP AMP-LEV.B 制造商:Analog Devices 功能描述:OP AMP QUAD GP 18V 20PIN LCC - Rail/Tube 制造商:Analog Devices 功能描述:Precision Amplifiers Quad Prec Hi Spd 28MHz 170V/uS