參數(shù)資料
型號: OP184FSZ-REEL
廠商: Analog Devices Inc
文件頁數(shù): 8/24頁
文件大小: 0K
描述: IC OPAMP GP R-R 4.25MHZ LN 8SOIC
設計資源: Variable Gain Noninverting Amplifier Using AD5292 and OP184 (CN0112)
Variable Gain Inverting Amplifier Using AD5292 and OP184 (CN0113)
Programmable High Voltage Source with Boosted Output Current Using AD5292, OP184, and MOSFETs (CN0115)
Low-Noise Microwave fractional-N PLL using active loop filter and RF prescaler (CN0174)
標準包裝: 2,500
放大器類型: 通用
電路數(shù): 1
輸出類型: 滿擺幅
轉(zhuǎn)換速率: 4 V/µs
增益帶寬積: 4.25MHz
電流 - 輸入偏壓: 80nA
電壓 - 輸入偏移: 175µV
電流 - 電源: 2.25mA
電流 - 輸出 / 通道: 10mA
電壓 - 電源,單路/雙路(±): 3 V ~ 36 V,±1.5 V ~ 18 V
工作溫度: -40°C ~ 125°C
安裝類型: 表面貼裝
封裝/外殼: 8-SOIC(0.154",3.90mm 寬)
供應商設備封裝: 8-SO
包裝: 帶卷 (TR)
OP184/OP284/OP484
Rev. J | Page 16 of 24
As a design aid, Figure 49 shows the total equivalent input noise
of the OP284 and the total thermal noise of a resistor for com-
parison. Note that for source resistance less than 1 kΩ, the
equivalent input noise voltage of the OP284 is dominant.
TOTAL SOURCE RESISTANCE, RS ()
100
1
EQ
U
IVA
L
EN
T
H
ER
MA
L
N
O
ISE
(n
V/
H
z)
10
10k
OP284 TOTAL
EQUIVALENT NOISE
RESISTOR THERMAL
NOISE ONLY
00293-
049
100
1k
100k
FREQUENCY = 1kHz
TA = 25°C
Figure 49. OP284 Equivalent Thermal Noise vs. Total Source Resistance
Because circuit SNR is the critical parameter in the final analysis,
the noise behavior of a circuit is often expressed in terms of its
noise figure, NF. The noise figure is defined as the ratio of a
circuit’s output signal-to-noise to its input signal-to-noise.
An expression of a circuit NF in dB, and in terms of the
operational amplifier voltage and current noise parameters
defined previously, is given by
( )
(
)
( )
×
+
=
2
1
log
10
dB
nRS
S
nOA
e
R
i
e
NF
where:
NF (dB) is the noise figure of the circuit, expressed in decibels.
(enOA)2 is the OP284 noise voltage spectral power (1 Hz bandwidth).
(inOA)2 is the OP284 noise current spectral power (1 Hz bandwidth).
(enRS)2 is the source resistance thermal noise voltage power =
(4kTRS).
RS is the effective, or equivalent, source resistance presented to
the amplifier.
Calculation of the circuit noise figure is straightforward because
the signal level in the application is not required to determine it.
However, many designers using NF calculations as the basis for
achieving optimum SNR believe that a low noise figure is equal to
low total noise. In fact, the opposite is true, as shown in Figure 50.
The noise figure of the OP284 is expressed as a function of
the source resistance level. Note that the lowest noise figure for
the OP284 occurs at a source resistance level of 10 kΩ.
However, Figure 49 shows that this source resistance level and
the OP284 generate approximately 14 nV/√Hz of total
equivalent circuit noise. Signal levels in the application
invariably increase to maximize circuit SNR, which is not an
option in low voltage, single-supply applications.
TOTAL SOURCE RESISTANCE, RS ()
10
100
N
OIS
E
FIGU
R
E
(
dB
)
5
10k
100k
1k
0
9
8
7
6
4
3
2
1
00293-
050
FREQUENCY = 1kHz
TA = 25°C
Figure 50. OP284 Noise Figure vs. Source Resistance
Therefore, to achieve optimum circuit SNR in single-supply
applications, it is recommended that an operational amplifier
with the lowest equivalent input noise voltage be chosen, along
with source resistance levels that are consistent with maintaining
low total circuit noise.
OVERDRIVE RECOVERY
The overdrive recovery time of an operational amplifier is the
time required for the output voltage to recover to its linear region
from a saturated condition. The recovery time is important in
applications where the amplifier must recover quickly after a
large transient event. The circuit shown in Figure 51 was used
to evaluate the OP284 overload recovery time. The OP284
takes approximately 2 s to recover from positive saturation
and approximately 1 s to recover from negative saturation.
2
3
1
+5V
8
4
R1
10k
R3
9k
R2
10k
VIN
10V STEP
–5V
VOUT
1/2
OP284
00293-
051
Figure 51. Output Overload Recovery Test Circuit
SINGLE-SUPPLY, 3 V INSTRUMENTATION
AMPLIFIER
The low noise, wide bandwidth, and rail-to-rail input/output
operation of the OP284 make it ideal for low supply voltage
applications such as in the two op amp instrumentation amplifier
shown in Figure 52. The circuit uses the classic two op amp
instrumentation amplifier topology with four resistors to set the
gain. The transfer equation of the circuit is identical to that of a
noninverting amplifier. Resistor R2 and Resistor R3 should be
closely matched to each other, as well as to Resistors (R1 + P1)
and Resistor R4 to ensure good common-mode rejection
performance.
相關PDF資料
PDF描述
RGH2012-2E-P-222-B RES 2.2K OHM .1% 1/4W 0805 SMD
NPPN252FFKS-RC CONN RECEPT 2MM DUAL SMD 50POS
LT6230IS6-10#TRMPBF IC OP AMP SGL 1.45GHZ SOT23-6
0901210778 CONN HEADER R/A GOLD 18POS
966240-2000-AR-PR CONN SOCKET LO-PRO 40PS GOLD SMD
相關代理商/技術(shù)參數(shù)
參數(shù)描述
OP184FSZ-REEL7 功能描述:IC OPAMP GP R-R 4.25MHZ LN 8SOIC RoHS:是 類別:集成電路 (IC) >> Linear - Amplifiers - Instrumentation 系列:- 產(chǎn)品培訓模塊:Differential Circuit Design Techniques for Communication Applications 標準包裝:1 系列:- 放大器類型:RF/IF 差分 電路數(shù):1 輸出類型:差分 轉(zhuǎn)換速率:9800 V/µs 增益帶寬積:- -3db帶寬:2.9GHz 電流 - 輸入偏壓:3µA 電壓 - 輸入偏移:- 電流 - 電源:40mA 電流 - 輸出 / 通道:- 電壓 - 電源,單路/雙路(±):3 V ~ 3.6 V 工作溫度:-40°C ~ 85°C 安裝類型:表面貼裝 封裝/外殼:16-VQFN 裸露焊盤,CSP 供應商設備封裝:16-LFCSP-VQ 包裝:剪切帶 (CT) 產(chǎn)品目錄頁面:551 (CN2011-ZH PDF) 其它名稱:ADL5561ACPZ-R7CT
OP186 制造商:AD 制造商全稱:Analog Devices 功能描述:5 uA, Rail-to-Rail Output Operational Amplifier
OP186GRT 制造商:AD 制造商全稱:Analog Devices 功能描述:5 uA, Rail-to-Rail Output Operational Amplifier
OP186GRT-REEL 制造商:Rochester Electronics LLC 功能描述:SINGLE 5UA RAIL TO RAIL O - Tape and Reel
OP186GRT-REEL7 制造商:Rochester Electronics LLC 功能描述:- Tape and Reel