
MVTX2603
Data Sheet
25
Zarlink Semiconductor Inc.
source port flow control for the incoming frame’s source if that port is flow control enabled. Second, the TxQ
manager handles transmission scheduling; it schedules transmission among the queues representing different
classes for a port. Once a frame has been scheduled, the TxQ manager reads the FCB information and writes to
the correct port control module.
6.3 Port Control
The port control module calculates the SRAM read address for the frame currently being transmitted. It also writes
start of frame information and an end of frame flag to the MAC TxFIFO. When transmission is done, the port control
module requests that the buffer be released.
6.4 TxDMA
The TxDMA multiplexes data and address from port control, and arbitrates among buffer release requests from the
port control modules.
7.0 Quality of Service and Flow Control
7.1 Model
Quality of service is an all-encompassing term for which different people have different interpretations. In general,
the approach to quality of service described here assumes that we do not know the offered traffic pattern. We also
assume that the incoming traffic is not policed or shaped. Furthermore, we assume that the network manager
knows his applications, such as voice, file transfer, or web browsing, and their relative importance. The manager
can then subdivide the applications into classes and set up a service contract with each. The contract may consist
of bandwidth or latency assurances per class. Sometimes it may even reflect an estimate of the traffic mix offered to
the switch. As an added bonus, although we do not assume anything about the arrival pattern, if the incoming traffic
is policed or shaped, we may be able to provide additional assurances about our switch’s performance.
Table 6 on page 25 shows examples of QoS applications with three transmission priorities, but best effort (P0)
traffic may form a fourth class with no bandwidth or latency assurances. Gigabit ports actually have eight total
transmission priorities.
Goals
Total
Assured Bandwidth
(user defined)
Low Drop Probability
(low-drop)
High Drop Probability
(high-drop)
Highest transmission
priority, P3
50 Mbps
Apps: phone calls, circuit
emulation.
Latency: < 1 ms.
Drop: No drop if P3 not
oversubscribed.
Apps: training video.
Latency: < 1 ms.
Drop: No drop if P3 not
oversubscribed; first P3 to
drop otherwise.
Middle transmission
priority, P2
37.5 Mbps
Apps: interactive apps, Web
business.
Latency: < 4-5 ms.
Drop: No drop if P2 not
oversubscribed.
Apps: non-critical interactive
apps.
Latency: < 4-5 ms.
Drop: No drop if P2 not
oversubscribed; first P2 to
drop otherwise.
Table 6 - Two-dimensional World Traffic