參數(shù)資料
型號: MPF930RL1
廠商: ON SEMICONDUCTOR
元件分類: 小信號晶體管
英文描述: 2000 mA, 35 V, N-CHANNEL, Si, SMALL SIGNAL, MOSFET, TO-92
封裝: PLASTIC, TO-226AE, 3 PIN
文件頁數(shù): 21/34頁
文件大?。?/td> 317K
代理商: MPF930RL1
Reliability and Quality Assurance
9–16
Motorola Small–Signal Transistors, FETs and Diodes Device Data
MECHANICAL SHOCK
This test is used to determine the ability of the device to
withstand a sudden change in mechanical stress due to abrupt
changes in motion as seen in handling, transportation, or
actual use.
Typical Test Conditions: Acceleration = 1500 g’s, Orienta-
tion = X1, Y1, Y2 plane, t = 0.5 msec, Blows = 5
Common Failure Modes: Open, short, excessive leak-
age, mechanical failure
Common Failure Mechanisms: Die and wire bonds,
cracked die, package defects
Military Reference: MIL–STD–750, Method 2015
MOISTURE RESISTANCE
The purpose of this test is to evaluate the moisture resistance
of components under temperature/humidity conditions typical
of tropical environments.
Typical Test Conditions: TA = –10°C to 65°C, rh = 80%
to 98%, t = 24 hours/cycles, cycle = 10
Common Failure Modes: Parametric shifts in leakage
and mechanical failure
Common Failure Mechanisms: Corrosion or contami-
nants on or within the package materials. Poor package
sealing
Military Reference: MIL–STD–750, Method 1021
SOLDERABILITY
The purpose of this test is to measure the ability of the device
leads/terminals to be soldered after an extended period of
storage (shelf life).
Typical Test Conditions: Steam aging = 8 hours, Flux =
R, Solder = Sn60, Sn63
Common Failure Modes: Pin holes, dewetting, nonwet-
ting
Common Failure Mechanisms: Poor plating, contami-
nated leads
Military Reference: MIL–STD–750, Method 2026
SOLDER HEAT
This test is used to measure the ability of a device to withstand
the temperatures as may be seen in wave soldering
operations. Electrical testing is the endpoint critierion for this
stress.
Typical Test Conditions: Solder Temperature = 260
°C, t
= 10 seconds
Common Failure Modes: Parameter shifts, mechanical
failure
Common Failure Mechanisms: Poor package design
Military Reference: MIL–STD–750, Method 2031
STEADY STATE OPERATING LIFE (SSOL)
The purpose of this test is to evaluate the bulk stability of the
die and to generate defects resulting from manufacturing
aberrations
that
are
manifested
as
time
and
stress–dependent failures.
Typical Test Conditions: TA = 25°C, PD = Data Book
maximum rating, t = 16 to 1000 hours
Common Failure Modes: Parametric shifts and cata-
strophic
Common Failure Mechanisms: Foreign material, crack
die, bulk die, metallization, wire and die bond defects
Military Reference: MIL–STD–750, Method 1026
TEMPERATURE CYCLING (AIR TO AIR)
The purpose of this test is to evaluate the ability of the device
to withstand both exposure to extreme temperatures and
transitions between temperature extremes. This testing will
also expose excessive thermal mismatch between materials.
Typical Test Conditions: TA = –65°C to 200°C, cycle =
10 to 4000
Common Failure Modes: Parametric shifts and cata-
strophic
Common Failure Mechanisms: Wire bond, cracked or
lifted die and package failure
Military Reference: MIL–STD–750, Method 1051
THERMAL SHOCK (LIQUID TO LIQUID)
The purpose of this test is to evaluate the ability of the device
to withstand both exposure to extreme temperatures and
sudden transitions between temperature extremes. This
testing will also expose excessive thermal mismatch between
materials.
Typical Test Conditions: TA = 0°C to 100°C, cycle = 20
to 300
Common Failure Modes: Parametric shifts and cata-
strophic
Common Failure Mechanisms: Wire bond, cracked or
lifted die and package failure
Military Reference: MIL–STD–750, Method 1056
VARIABLE FREQUENCY VIBRATION
This test is used to examine the ability of the device to
withstand deterioration due to mechanical resonance.
Typical Test Conditions: Peak acceleration = 20 g’s,
Frequency range = 20 Hz to KHz, t = 48 minutes
Common Failure Modes: Open, short, excessive leak-
age, mechanical failure
Common Failure Mechanisms: Die and wire bonds,
cracked die, package defects
Military Reference: MIL–STD–750, Method 2056
相關(guān)PDF資料
PDF描述
MPF990RLRE 2000 mA, 90 V, N-CHANNEL, Si, SMALL SIGNAL, MOSFET, TO-92
MPF930RLRA 2000 mA, 35 V, N-CHANNEL, Si, SMALL SIGNAL, MOSFET, TO-92
MPF930ZL1 2000 mA, 35 V, N-CHANNEL, Si, SMALL SIGNAL, MOSFET, TO-92
MPF960RL 2000 mA, 60 V, N-CHANNEL, Si, SMALL SIGNAL, MOSFET, TO-92
MPF930RL 2000 mA, 35 V, N-CHANNEL, Si, SMALL SIGNAL, MOSFET, TO-92
相關(guān)代理商/技術(shù)參數(shù)
參數(shù)描述
MPF960 功能描述:MOSFET N-CH 60V 2A TO-92 RoHS:否 類別:分離式半導(dǎo)體產(chǎn)品 >> FET - 單 系列:- 標(biāo)準(zhǔn)包裝:1,000 系列:MESH OVERLAY™ FET 型:MOSFET N 通道,金屬氧化物 FET 特點(diǎn):邏輯電平門 漏極至源極電壓(Vdss):200V 電流 - 連續(xù)漏極(Id) @ 25° C:18A 開態(tài)Rds(最大)@ Id, Vgs @ 25° C:180 毫歐 @ 9A,10V Id 時(shí)的 Vgs(th)(最大):4V @ 250µA 閘電荷(Qg) @ Vgs:72nC @ 10V 輸入電容 (Ciss) @ Vds:1560pF @ 25V 功率 - 最大:40W 安裝類型:通孔 封裝/外殼:TO-220-3 整包 供應(yīng)商設(shè)備封裝:TO-220FP 包裝:管件
MPF990 功能描述:MOSFET N-CH 90V 2A TO-92 RoHS:否 類別:分離式半導(dǎo)體產(chǎn)品 >> FET - 單 系列:- 標(biāo)準(zhǔn)包裝:1,000 系列:MESH OVERLAY™ FET 型:MOSFET N 通道,金屬氧化物 FET 特點(diǎn):邏輯電平門 漏極至源極電壓(Vdss):200V 電流 - 連續(xù)漏極(Id) @ 25° C:18A 開態(tài)Rds(最大)@ Id, Vgs @ 25° C:180 毫歐 @ 9A,10V Id 時(shí)的 Vgs(th)(最大):4V @ 250µA 閘電荷(Qg) @ Vgs:72nC @ 10V 輸入電容 (Ciss) @ Vds:1560pF @ 25V 功率 - 最大:40W 安裝類型:通孔 封裝/外殼:TO-220-3 整包 供應(yīng)商設(shè)備封裝:TO-220FP 包裝:管件
MPFA403PMJ22BA 制造商:ALLEN 功能描述:AC SERVI NITIR
MPF-A403P-MJ22BA 制造商:ALLEN 功能描述:AC SERVI NITIR
MP-FB 制造商:SYSTEMSENSOR 制造商全稱:SYSTEMSENSOR 功能描述:Speakers