Chapter 5 Resets, Interrupts, and General System Control
MC9S08SG8 MCU Series Data Sheet, Rev. 6
59
Freescale Semiconductor
5.4
Computer Operating Properly (COP) Watchdog
The COP watchdog is intended to force a system reset when the application software fails to execute as
expected. To prevent a system reset from the COP timer (when it is enabled), application software must
reset the COP counter periodically. If the application program gets lost and fails to reset the COP counter
before it times out, a system reset is generated to force the system back to a known starting point.
for additional information). If the COP watchdog is not used in an application, it can be disabled by
clearing COPT bits in SOPT1.
The COP counter is reset by writing 0x0055 and 0x00AA (in this order) to the address of SRS during the
selected timeout period. Writes do not affect the data in the read-only SRS. As soon as the write sequence
is done, the COP timeout period is restarted. If the program fails to do this during the time-out period, the
MCU will reset. Also, if any value other than 0x0055 or 0x00AA is written to SRS, the MCU is
immediately reset.
information) selects the clock source used for the COP timer. The clock source options are either the bus
clock or an internal 1-kHz clock source. With each clock source, there are three associated time-outs
controlled by the COPT bits in SOPT1.
Table 5-1 summaries the control functions of the COPCLKS and
COPT bits. The COP watchdog defaults to operation from the 1-kHz clock source and the longest time-out
(210 cycles).
Table 5-1. COP Conguration Options
When the bus clock source is selected, windowed COP operation is available by setting COPW in the
SOPT2 register. In this mode, writes to the SRS register to clear the COP timer must occur in the last 25%
of the selected timeout period. A premature write immediately resets the MCU. When the 1-kHz clock
source is selected, windowed COP operation is not available.
Control Bits
Clock Source
COP Window1 Opens
(COPW = 1)
1 Windowed COP operation requires the user to clear the COP timer in the last 25% of the selected timeout period. This column
displays the minimum number of clock counts required before the COP timer can be reset hen in windowed COP mode
(COPW = 1).
COP Overow Count
COPCLKS
COPT[1:0]
N/A
0:0
N/A
COP is disabled
0
0:1
1 kHz
N/A
25 2)
2 Values shown in milliseconds based on t
tolerance of this value.
0
1:0
1 kHz
N/A
28 cycles (256 ms1)
0
1:1
1 kHz
N/A
210 cycles (1.024 s1)
1
0:1
Bus
6144 cycles
213 cycles
1
1:0
Bus
49,152 cycles
216 cycles
1
1:1
Bus
196,608 cycles
218 cycles