Chapter 14 Serial Communications Interface (S08SCIV4)
MC9S08SG8 MCU Series Data Sheet, Rev. 6
204
Freescale Semiconductor
14.2
Register Denition
The SCI has eight 8-bit registers to control baud rate, select SCI options, report SCI status, and for
transmit/receive data.
Refer to the direct-page register summary in the Memory chapter of this data sheet for the absolute address
assignments for all SCI registers. This section refers to registers and control bits only by their names. A
Freescale-provided equate or header le is used to translate these names into the appropriate absolute
addresses.
14.2.1
SCI Baud Rate Registers (SCIBDH, SCIBDL)
This pair of registers controls the prescale divisor for SCI baud rate generation. To update the 13-bit baud
rate setting [SBR12:SBR0], rst write to SCIBDH to buffer the high half of the new value and then write
to SCIBDL. The working value in SCIBDH does not change until SCIBDL is written.
SCIBDL is reset to a non-zero value, so after reset the baud rate generator remains disabled until the rst
time the receiver or transmitter is enabled (RE or TE bits in SCIC2 are written to 1).
76543210
R
0
SBR12
W
Reset
00000000
= Unimplemented or Reserved
Figure 14-4. SCI Baud Rate Register (SCIBDH)
Table 14-1. SCIBDH Field Descriptions
Field
Description
7
LBKDIE
LIN Break Detect Interrupt Enable (for LBKDIF)
0 Hardware interrupts from LBKDIF disabled (use polling).
1 Hardware interrupt requested when LBKDIF ag is 1.
6
RXEDGIE
RxD Input Active Edge Interrupt Enable (for RXEDGIF)
0 Hardware interrupts from RXEDGIF disabled (use polling).
1 Hardware interrupt requested when RXEDGIF ag is 1.
4:0
SBR[12:8]
Baud Rate Modulo Divisor — The 13 bits in SBR[12:0] are referred to collectively as BR, and they set the
modulo divide rate for the SCI baud rate generator. When BR = 0, the SCI baud rate generator is disabled to
reduce supply current. When BR = 1 to 8191, the SCI baud rate = BUSCLK/(16
×BR). See also BR bits in