參數(shù)資料
型號(hào): MC68HC11D0CP2
廠商: FREESCALE SEMICONDUCTOR INC
元件分類(lèi): 微控制器/微處理器
英文描述: 8-BIT, MROM, 2 MHz, MICROCONTROLLER, PDIP40
封裝: PLASTIC, DIP-40
文件頁(yè)數(shù): 93/124頁(yè)
文件大?。?/td> 1481K
代理商: MC68HC11D0CP2
第1頁(yè)第2頁(yè)第3頁(yè)第4頁(yè)第5頁(yè)第6頁(yè)第7頁(yè)第8頁(yè)第9頁(yè)第10頁(yè)第11頁(yè)第12頁(yè)第13頁(yè)第14頁(yè)第15頁(yè)第16頁(yè)第17頁(yè)第18頁(yè)第19頁(yè)第20頁(yè)第21頁(yè)第22頁(yè)第23頁(yè)第24頁(yè)第25頁(yè)第26頁(yè)第27頁(yè)第28頁(yè)第29頁(yè)第30頁(yè)第31頁(yè)第32頁(yè)第33頁(yè)第34頁(yè)第35頁(yè)第36頁(yè)第37頁(yè)第38頁(yè)第39頁(yè)第40頁(yè)第41頁(yè)第42頁(yè)第43頁(yè)第44頁(yè)第45頁(yè)第46頁(yè)第47頁(yè)第48頁(yè)第49頁(yè)第50頁(yè)第51頁(yè)第52頁(yè)第53頁(yè)第54頁(yè)第55頁(yè)第56頁(yè)第57頁(yè)第58頁(yè)第59頁(yè)第60頁(yè)第61頁(yè)第62頁(yè)第63頁(yè)第64頁(yè)第65頁(yè)第66頁(yè)第67頁(yè)第68頁(yè)第69頁(yè)第70頁(yè)第71頁(yè)第72頁(yè)第73頁(yè)第74頁(yè)第75頁(yè)第76頁(yè)第77頁(yè)第78頁(yè)第79頁(yè)第80頁(yè)第81頁(yè)第82頁(yè)第83頁(yè)第84頁(yè)第85頁(yè)第86頁(yè)第87頁(yè)第88頁(yè)第89頁(yè)第90頁(yè)第91頁(yè)第92頁(yè)當(dāng)前第93頁(yè)第94頁(yè)第95頁(yè)第96頁(yè)第97頁(yè)第98頁(yè)第99頁(yè)第100頁(yè)第101頁(yè)第102頁(yè)第103頁(yè)第104頁(yè)第105頁(yè)第106頁(yè)第107頁(yè)第108頁(yè)第109頁(yè)第110頁(yè)第111頁(yè)第112頁(yè)第113頁(yè)第114頁(yè)第115頁(yè)第116頁(yè)第117頁(yè)第118頁(yè)第119頁(yè)第120頁(yè)第121頁(yè)第122頁(yè)第123頁(yè)第124頁(yè)
MOTOROLA
SERIAL COMMUNICATIONS INTERFACE
MC68HC11D3
7-4
TECHNICAL DATA
7.4 Wake-up Feature
The wake-up feature reduces SCI service overhead in multiple receiver systems. Soft-
ware for each receiver evaluates the first character of each message. The receiver is
placed in wakeup mode by writing a one to the RWU bit in the SCCR2 register. While
RWU is one, all of the receiver-related status flags (RDRF, IDLE, OR, NF, and FE) are
inhibited (cannot become set). Although RWU can be cleared by a software write to
SCCR2, to do so would be unusual. Normally RWU is set by software and is cleared
automatically with hardware. Whenever a new message begins, logic alerts the sleep-
ing receivers to wake up and evaluate the initial character of the new message.
Two methods of wake-up are available: idle line wake-up and address mark wake-up.
During idle line wake-up, a sleeping receiver awakens as soon as the RxD line be-
comes idle. In the address mark wake-up, logic one in the most significant bit (MSB)
of a character wakes up all sleeping receivers.
7.4.1 Idle-Line Wakeup
To use the receiver wake-up method, establish a software addressing scheme to allow
the transmitting devices to direct a message to individual receivers or to groups of re-
ceivers. This addressing scheme can take any form as long as all transmitting and re-
ceiving devices are programmed to understand the same scheme. Because the
addressing information is usually the first frame(s) in a message, receivers that are not
part of the current task do not become burdened with the entire set of addressing
frames. All receivers are awake (RWU = 0) when each message begins. As soon as
a receiver determines that the message is not intended for it, software sets the RWU
bit (RWU = 1), which inhibits further flag setting until the RxD line goes idle at the end
of the message. As soon as an idle line is detected by receiver logic, hardware auto-
matically clears the RWU bit so that the first frame of the next message can be re-
ceived. This type of receiver wakeup requires a minimum of one idle-line frame time
between messages, and no idle time between frames in a message.
7.4.2 Address-Mark Wakeup
The serial characters in this type of wakeup consist of seven (eight if M = 1) information
bits and an MSB, which indicates an address character (when set to one — mark). The
first character of each message is an addressing character (MSB = 1). All receivers in
the system evaluate this character to determine if the remainder of the message is di-
rected toward this particular receiver. As soon as a receiver determines that a mes-
sage is not intended for it, the receiver activates the RWU function by using a software
write to set the RWU bit. Because setting RWU inhibits receiver-related flags, there is
no further software overhead for the rest of this message. When the next message be-
gins, its first character has its MSB set, which automatically clears the RWU bit and
enables normal character reception. The first character whose MSB is set is also the
first character to be received after wakeup because RWU gets cleared before the stop
bit for that frame is serially received. This type of wakeup allows messages to include
gaps of idle time, unlike the idle-line method, but there is a loss of efficiency because
of the extra bit time for each character (address bit) required for all characters.
相關(guān)PDF資料
PDF描述
MC68HC11D0CP 8-BIT, MICROCONTROLLER, PDIP40
MC68HC11L6CFU1 8-BIT, OTPROM, 1 MHz, MICROCONTROLLER, PQFP64
MC68HC16S2CPU25 16-BIT, 25.17 MHz, MICROCONTROLLER, PQFP100
MC16S2CPU20B1 16-BIT, 20.97 MHz, MICROCONTROLLER, PQFP100
MC68HC16X1CTH 16-BIT, MROM, 16.78 MHz, MICROCONTROLLER, PQFP120
相關(guān)代理商/技術(shù)參數(shù)
參數(shù)描述
MC68HC11D0CP3 制造商:未知廠家 制造商全稱(chēng):未知廠家 功能描述:8-Bit Microcontroller
MC68HC11D0FB 制造商:未知廠家 制造商全稱(chēng):未知廠家 功能描述:8-Bit Microcontroller
MC68HC11D0FN 制造商:未知廠家 制造商全稱(chēng):未知廠家 功能描述:8-Bit Microcontroller
MC68HC11D0FNR2 制造商:未知廠家 制造商全稱(chēng):未知廠家 功能描述:8-Bit Microcontroller
MC68HC11D0P 制造商:未知廠家 制造商全稱(chēng):未知廠家 功能描述:8-Bit Microcontroller