MC33501, MC33503
http://onsemi.com
10
0
1.0
2.0
3.0
4.0
5.0
25
0
25
50
75
100
125
TA, AMBIENT TEMPERATURE (°C)
55
0
20
40
60
20
40
1.0 M
10 M
f, FREQUENCY (Hz)
10 k
100 k
Figure 21. Slew Rate versus Temperature
55
25
0
25
50
75
100
125
TA, AMBIENT TEMPERATURE (°C)
0
1.0
2.0
3.0
4.0
VCC VEE = 5.0 V
+ Slew Rate
25
0
25
50
75
100
125
55
0
20
40
0
20
40
60
80
100
60
80
100
VCC VEE = 5.0 V
RL = 600 W
CL = 100 pF
10
1.0 k
1.0 M
100
100 k
10 k
0
20
40
60
70
RT, DIFFERENTIAL SOURCE RESISTANCE (W)
Phase Margin
Gain Margin
CL, CAPACITIVE LOAD (pF)
3.0
10
100
1000
3000
30
300
0
10
20
50
60
30
40
VCC VEE = 1.0 V
+ Slew Rate
VCC VEE = 1.0 V
Slew Rate
VCC VEE = 5.0 V
Slew Rate
SR,
SLEW
RA
TE
(V/
s)μ
VCC VEE = 5.0 V
f = 100 kHz
GBW
,GAIN
BANDWIDTH
PRODUCT
(MHz)
VCC VEE
= 1.0 V
VCC VEE = 5.0 V
VCC VEE
= 5.0 V
VCC VEE = 1.0 V
RL = 600 W
CL = 0
TA = 25°C
0
20
40
60
70
Phase Margin
Gain Margin
TA, AMBIENT TEMPERATURE (°C)
A
V
,GAIN
MARGIN
(dB)
VCC VEE = 5.0 V
RL = 600 W
CL = 100 pF
TA = 25°C
0
10
20
50
60
30
40
A
V
,GAIN
MARGIN
(dB)
Figure 22. Gain Bandwidth Product
versus Temperature
Figure 23. Voltage Gain and Phase
versus Frequency
Figure 24. Gain and Phase Margin
versus Temperature
Figure 25. Gain and Phase Margin versus
Differential Source Resistance
Figure 26. Feedback Loop Gain and Phase
versus Capacitive Load
VCC VEE = 5.0 V
RL = 600 W
TA = 25°C
50
30
10
Phase Margin
Gain Margin
10
30
50
A
VOL
,GAIN
(dB)
F
m,
PHASE
MARGIN
(°
)
F
m,
PHASE
MARGIN
(°
)
F
m,
PHASE
MARGIN
(°
)
A
V
GAIN
MARGIN
(dB)