參數(shù)資料
型號: M38039FFHHP
元件分類: 微控制器/微處理器
英文描述: 8-BIT, FLASH, 8.4 MHz, MICROCONTROLLER, PQFP64
封裝: 10 X 10 MM, 0.50 MM PITCH, PLASTIC, LQFP-64
文件頁數(shù): 16/119頁
文件大?。?/td> 1818K
代理商: M38039FFHHP
Rev.3.11
Apr 5, 2006
Page 110 of 113
REJ03B0017-0311
3803 Group (Spec.H)
Notes on Serial Interface
1. Notes when selecting clock synchronous serial I/O
(1) Stop of transmission operation
As for serial I/Oi (i = 1, 3) that can be used as either a clock
synchronous or an asynchronous (UART) serial I/O, clear the
serial I/Oi enable bit and the transmit enable bit to “0” (serial
I/Oi and transmit disabled).
<Reason>
Since transmission is not stopped and the transmission circuit is
not initialized even if only the serial I/Oi enable bit is cleared to
“0” (serial I/Oi disabled), the internal transmission is running (in
this case, since pins TxDi, RxDi, SCLKi, and SRDYi function as
I/O ports, the transmission data is not output). When data is
written to the transmit buffer register in this state, data starts to
be shifted to the transmit shift register. When the serial I/Oi
enable bit is set to “1” at this time, the data during internally
shifting is output to the TxDi pin and an operation failure occurs.
(2) Stop of receive operation
As for serial I/Oi (i = 1, 3) that can be used as either a clock
synchronous or an asynchronous (UART) serial I/O, clear the
receive enable bit to “0” (receive disabled), or clear the serial
I/Oi enable bit to “0” (serial I/Oi disabled).
(3) Stop of transmit/receive operation
As for serial I/Oi (i = 1, 3) that can be used as either a clock
synchronous or an asynchronous (UART) serial I/O, clear both
the transmit enable bit and receive enable bit to “0” (transmit and
receive disabled).
(when data is transmitted and received in the clock synchronous
serial I/O mode, any one of data transmission and reception
cannot be stopped.)
<Reason>
In the clock synchronous serial I/O mode, the same clock is used
for transmission and reception. If any one of transmission and
reception is disabled, a bit error occurs because transmission and
reception cannot be synchronized.
In this mode, the clock circuit of the transmission circuit also
operates for data reception. Accordingly, the transmission circuit
does not stop by clearing only the transmit enable bit to “0”
(transmit disabled). Also, the transmission circuit is not
initialized by clearing the serial I/Oi enable bit to “0” (serial I/Oi
disabled) (refer to (1) in 1.).
2. Notes when selecting clock asynchronous serial I/O
(1) Stop of transmission operation
Clear the transmit enable bit to “0” (transmit disabled). The
transmission operation does not stop by clearing the serial I/Oi
enable bit (i = 1, 3) to “0”.
<Reason>
This is the same as (1) in 1.
(2) Stop of receive operation
Clear the receive enable bit to “0” (receive disabled).
(3) Stop of transmit/receive operation
Only transmission operation is stopped.
Clear the transmit enable bit to “0” (transmit disabled). The
transmission operation does not stop by clearing the serial I/Oi
enable bit (i = 1, 3) to “0”.
<Reason>
This is the same as (1) in 1.
Only receive operation is stopped.
Clear the receive enable bit to “0” (receive disabled).
3. SRDYi (i = 1, 3) output of reception side
When signals are output from the SRDYi pin on the reception side
by using an external clock in the clock synchronous serial I/O
mode, set all of the receive enable bit, the SRDYi output enable
bit, and the transmit enable bit to “1” (transmit enabled).
4. Setting serial I/Oi (i = 1, 3) control register again
Set the serial I/Oi control register again after the transmission
and the reception circuits are reset by clearing both the transmit
enable bit and the receive enable bit to “0.”
Fig 90. Sequence of setting serial I/Oi (i = 1, 3) control
register again
5. Data transmission control with referring to transmit
shift register completion flag
After the transmit data is written to the transmit buffer register,
the transmit shift register completion flag changes from “1” to
“0” with a delay of 0.5 to 1.5 shift clocks. When data
transmission is controlled with referring to the flag after writing
the data to the transmit buffer register, note the delay.
6. Transmission control when external clock is selected
When an external clock is used as the synchronous clock for data
transmission, set the transmit enable bit to “1” at “H” of the
SCLKi (i = 1, 3) input level. Also, write the transmit data to the
transmit buffer register at “H” of the SCLKi input level.
7. Transmit interrupt request when transmit enable bit
is set
When using the transmit interrupt, take the following sequence.
(1) Set the serial I/Oi transmit interrupt enable bit (i = 1, 3) to
“0” (disabled).
(2) Set the tranasmit enable bit to “1”.
(3) Set the serial I/Oi transmit interrupt request bit (i = 1, 3) to
“0” after 1 or more instruction has executed.
(4) Set the serial I/Oi transmit interrupt enable bit (i = 1, 3) to
“1” (enabled).
<Reason>
When the transmission enable bit is set to “1”, the transmit buffer
empty flag and transmit shift register shift completion flag are
also set to “1”.
Therefore, regardless of selecting which timing for the
generating of transmit interrupts, the interrupt request is
generated and the transmit interrupt request bit is set at this point.
8. Writing to baud rate generator i (BRGi) (i = 1, 3)
Write data to the baud rate generator i (BRGi) (i = 1, 3) while the
transmission/reception operation is stopped.
Can be set with the
LDM instruction at
the same time
Set the bits 0 to 3 and bit 6 of the serial I/Oi
control register
Clear both the transmit enable bit (TE) and
the receive enable bit (RE) to “0”
Set both the transmit enable bit (TE) and the
receive enable bit (RE), or one of them to “1”
相關(guān)PDF資料
PDF描述
M38037M8H-XXXHP 8-BIT, MROM, 8.4 MHz, MICROCONTROLLER, PQFP64
M38037M6H-XXXFP 8-BIT, MROM, 8.4 MHz, MICROCONTROLLER, PQFP64
M38039FFHFP 8-BIT, FLASH, 8.4 MHz, MICROCONTROLLER, PQFP64
M38039MFH-XXXFP 8-BIT, MROM, 8.4 MHz, MICROCONTROLLER, PQFP64
M38034M4H-XXXHP 8-BIT, MROM, 8.4 MHz, MICROCONTROLLER, PQFP64
相關(guān)代理商/技術(shù)參數(shù)
參數(shù)描述
M38039FFH-HP#U 制造商:Renesas Electronics Corporation 功能描述:8BIT 740 CISC 56KB FLASH 16.8MHZ 3.3/5V - Trays
M38039FFHHP#U0 功能描述:MCU 3/5V 56K+4K PB-FREE 64-LQFP RoHS:是 類別:集成電路 (IC) >> 嵌入式 - 微控制器, 系列:740/38000 標準包裝:250 系列:56F8xxx 核心處理器:56800E 芯體尺寸:16-位 速度:60MHz 連通性:CAN,SCI,SPI 外圍設(shè)備:POR,PWM,溫度傳感器,WDT 輸入/輸出數(shù):21 程序存儲器容量:40KB(20K x 16) 程序存儲器類型:閃存 EEPROM 大小:- RAM 容量:6K x 16 電壓 - 電源 (Vcc/Vdd):2.25 V ~ 3.6 V 數(shù)據(jù)轉(zhuǎn)換器:A/D 6x12b 振蕩器型:內(nèi)部 工作溫度:-40°C ~ 125°C 封裝/外殼:48-LQFP 包裝:托盤 配用:MC56F8323EVME-ND - BOARD EVALUATION MC56F8323
M38039FFHKP#U0 制造商:Renesas Electronics Corporation 功能描述:MCU 3/5V 56K+4K PB-FREE 64-LQFP - Trays
M38039FFHP 制造商:Renesas Electronics Corporation 功能描述:
M38039FFHP#U0 功能描述:MCU 3/5V 60K PB-FREE 64-LQFP RoHS:是 類別:集成電路 (IC) >> 嵌入式 - 微控制器, 系列:740/38000 標準包裝:250 系列:56F8xxx 核心處理器:56800E 芯體尺寸:16-位 速度:60MHz 連通性:CAN,SCI,SPI 外圍設(shè)備:POR,PWM,溫度傳感器,WDT 輸入/輸出數(shù):21 程序存儲器容量:40KB(20K x 16) 程序存儲器類型:閃存 EEPROM 大小:- RAM 容量:6K x 16 電壓 - 電源 (Vcc/Vdd):2.25 V ~ 3.6 V 數(shù)據(jù)轉(zhuǎn)換器:A/D 6x12b 振蕩器型:內(nèi)部 工作溫度:-40°C ~ 125°C 封裝/外殼:48-LQFP 包裝:托盤 配用:MC56F8323EVME-ND - BOARD EVALUATION MC56F8323