36
PRELIMINAR
Y
Notice:
This
is not
a final
specification.
Some
parametric
limits
are
subject
to change.
MITSUBISHI MICROCOMPUTERS
M37754M8C-XXXGP, M37754M8C-XXXHP
M37754S4CGP, M37754S4CHP
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Timer function for motor control
Three-phase motor drive waveform and pulse motor drive waveform
can be output by using plural internal timers A and B. Those modes
are explained bellow.
Three-phase motor drive waveform output
mode (three-phase waveform mode)
Three-phase waveform mode using four timers of the timers A0, A1,
A2 and B4 is selected by setting the waveform output select bits of
the waveform output mode register (address 1A16, Figure 41) to
“1002”.
There are two types of the three-phase waveform mode: three-
phase mode 0 and three-phase mode 1. Bit 4 of the waveform out-
put mode register selects either mode. In three-phase waveform
mode, set the corresponding timer mode registers of timers A0, A1,
and A2 to select the one-shot pulse mode with the rising edge of ex-
ternal trigger; set the timer mode register of timer B2 to select the
timer mode.
Figure 43 shows the three-phase waveform mode block diagram.
The three-phase waveform mode outputs six waveforms, positive
__
waveforms (U, V, W phases) and negative waveforms (U, V, W
phases), from the respective ports with “L” level active.
__
Timer A2 controls U and U phases; timer A1 does V and V phases
__
and timer A0 does W and W phases. Timer B2 controls those one-
shot pulses’ period of timers A2, A1 and A0.
In the waveform output, a short circuit prevention time can be set to
prevent “L” level of positive waveforms (U, V, W phases) from over-
__
lapping with “L” level of their negative waveforms (U, V, W phases).
The short circuit prevention time can be set with three 8-bit dead-
time timers, sharing one reload register. The dead-time timer oper-
ates as a one-shot timer. As its start trigger, both the rising and falling
edges of timers A0 to A2’s one-shot pulses or their falling edge. Bit 6
of the waveform output mode register selects it. When that is “0”,
both the rising and falling edges become the start trigger; when that
is “1”, the falling edge becomes it.
Timer A0 mode register 5616
Timer A1 mode register 5716
Timer A2 mode register 5816
Fix to “10” in three-phase
waveform mode
Fix to “1” in timers A0, A1
in timer A2
0 : No one-shot pulse output
1 : One-shot pulse output
Fix to “011” in three-phase
waveform mode
Clock source select bit
0 0 : Select Pf2
0 1 : Select Pf16
1 0 : Select Pf64
1 1 : Select Pf512
76543210
0
1
11
0
Address
Timer B2 mode register
5D16
Fix to “00” in three-phase
waveform mode
Not used in three-phase
waveform mode
Clock source select bit
0 0 : Select Pf2
0 1 : Select Pf16
1 0 : Select Pf64
1 1 : Select Pf512
76543210
0
Address
×
Fig. 42 Timer A0, A1, A2, mode register and timer B2 mode regis-
ter bit configuration
Waveform output mode register
1A16
Waveform output select bits
100 : Fix to “100” in three-phase
waveform mode
(Valid in three-phase mode 1)
Three-phase output polarity set buffer
0 : “H” output
1 : “L” output
Three-phase mode select bit
0 : Three-phase mode 0
1 : Three-phase mode 1
Not used in three-phase
waveform mode
Dead-time timer trigger select bit
0 : Both edge of one-shot pulse
with timers A2 to A0
1 : Only the falling edge of one-shot
pulse with timers A2 to A0
Waveform output control bit
0 : Waveform output disabled
1 : Waveform output enabled
76543210
0
1
×
Address
Note : Only when bit 5 of the particular function select register 1
(in Fig. 15) is set to “1”, this register’s contents can be changed
from the status during reset (in Fig.76).
Fig. 41 Waveform output mode register bit configuration