參數(shù)資料
型號(hào): LTC2355CMSE-12
廠商: LINEAR TECHNOLOGY CORP
元件分類: ADC
英文描述: Serial 12-Bit/14-Bit, 3.5Msps Sampling ADCs with Shutdown
中文描述: 1-CH 12-BIT PROPRIETARY METHOD ADC, SERIAL ACCESS, PDSO10
封裝: PLASTIC, MSOP-10
文件頁數(shù): 13/16頁
文件大?。?/td> 232K
代理商: LTC2355CMSE-12
13
LTC2355-12/LTC2355-14
2355f
Sleep mode and the power consumption drops from
18mW to 13
μ
W. One or more rising edges at SCK wake up
the LTC2355-12/LTC2355-14 for operation. The internal
reference (V
REF
) takes 2ms to slew and settle with a 10
μ
F
load. Note that, using sleep mode more frequently than
every 2ms, compromises the settled accuracy of the
internal reference. Note that, for slower conversion rates,
the Nap and Sleep modes can be used for substantial
reductions in power consumption.
DIGITAL INTERFACE
The LTC2355-12/LTC2355-14 has a 3-wire SPI-compatible
(Serial
Protocol Interface) interface. The SCK and CONV
inputs and SDO output implement this interface. The SCK
and CONV inputs accept swings from 3.3V logic and are
TTL compatible, if the logic swing does not exceed V
DD
. A
detailed description of the three serial port signals follows.
Conversion Start Input (CONV)
The rising edge of CONV starts a conversion, but
subsequent rising edges at CONV are ignored by the
LTC2355-12/LTC2355-14 until the following 16 SCK rising
edges have occurred. It is necessary to have a minimum
of 16 rising edges of the clock input SCK between rising
edges of CONV. But to obtain maximum conversion speed
(with a 63MHz SCK), it is necessary to allow two more
clock periods between conversions to allow 39ns of acqui-
sition time for the internal ADC sample-and-hold circuit.
With 16 clock periods per conversion, the maximum
conversion rate is limited to 3.5Msps to allow 39ns for
acquisition time. In either case, the output data stream
comes out within the first 16 clock periods to ensure
compatibility with processor serial ports. The duty cycle of
CONV can be arbitrarily chosen to be used as a frame sync
signal for the processor serial port. A simple approach to
generate CONV is to create a pulse that is one SCK wide to
drive the LTC2355-12/LTC2355-14 and then buffer this
signal with the appropriate number of inverters to ensure
the correct delay driving the frame sync input of the
processor serial port. It is good practice to drive the
LTC2355-12/LTC2355-14 CONV input first to avoid digital
noise interference during the sample-to-hold transition
triggered by CONV at the start of conversion. It is also
good practice to keep the width of the low portion of the
CONV signal greater than 15ns to avoid introducing glitches
in the front end of the ADC just before the sample-and-hold
goes into hold mode at the rising edge of CONV.
Minimizing Jitter on the CONV Input
In high speed applications where high amplitude sine
waves above 100kHz are sampled, the CONV signal must
have as little jitter as possible (10ps or less). The square
wave output of a common crystal clock module usually
meets this requirement. The challenge is to generate a
CONV signal from this crystal clock without jitter corrup-
tion from other digital circuits in the system. A clock
divider and any gates in the signal path from the crystal
clock to the CONV input should not share the same
integrated circuit with other parts of the system. As shown
in Figure 6, the SCK and CONV inputs should be driven
first, with digital buffers used to drive the serial port
interface. Also note that the master clock in the DSP may
already be corrupted with jitter, even if it comes directly
from the DSP crystal. Another problem with high speed
processor clocks is that they often use a low cost, low
speed crystal (i.e., 10MHz) to generate a fast, but jittery,
phase-locked-loop system clock (i.e., 40MHz). The jitter in
these PLL-generated high speed clocks can be several
nanoseconds. Note that if you choose to use the frame
sync signal generated by the DSP port, this signal will have
the same jitter of the DSP’s master clock.
APPLICATIU
W
U
U
相關(guān)PDF資料
PDF描述
LTC2355-12 Serial 12-Bit/14-Bit, 3.5Msps Sampling ADCs with Shutdown
LTC2355CMSE-14 Serial 12-Bit/14-Bit, 3.5Msps Sampling ADCs with Shutdown
LTC2355IMSE-12 Serial 12-Bit/14-Bit, 3.5Msps Sampling ADCs with Shutdown
LTC2355IMSE-14 Serial 12-Bit/14-Bit, 3.5Msps Sampling ADCs with Shutdown
LTCVX Serial 12-Bit/14-Bit, 3.5Msps Sampling ADCs with Shutdown
相關(guān)代理商/技術(shù)參數(shù)
參數(shù)描述
LTC2355CMSE-12#PBF 功能描述:IC ADC 12BIT 3.5MSPS 10-MSOP RoHS:是 類別:集成電路 (IC) >> 數(shù)據(jù)采集 - 模數(shù)轉(zhuǎn)換器 系列:- 標(biāo)準(zhǔn)包裝:1 系列:microPOWER™ 位數(shù):8 采樣率(每秒):1M 數(shù)據(jù)接口:串行,SPI? 轉(zhuǎn)換器數(shù)目:1 功率耗散(最大):- 電壓電源:模擬和數(shù)字 工作溫度:-40°C ~ 125°C 安裝類型:表面貼裝 封裝/外殼:24-VFQFN 裸露焊盤 供應(yīng)商設(shè)備封裝:24-VQFN 裸露焊盤(4x4) 包裝:Digi-Reel® 輸入數(shù)目和類型:8 個(gè)單端,單極 產(chǎn)品目錄頁面:892 (CN2011-ZH PDF) 其它名稱:296-25851-6
LTC2355CMSE-12#TRPBF 功能描述:IC ADC 12BIT 3.5MSPS 10-MSOP RoHS:是 類別:集成電路 (IC) >> 數(shù)據(jù)采集 - 模數(shù)轉(zhuǎn)換器 系列:- 標(biāo)準(zhǔn)包裝:1,000 系列:- 位數(shù):16 采樣率(每秒):45k 數(shù)據(jù)接口:串行 轉(zhuǎn)換器數(shù)目:2 功率耗散(最大):315mW 電壓電源:模擬和數(shù)字 工作溫度:0°C ~ 70°C 安裝類型:表面貼裝 封裝/外殼:28-SOIC(0.295",7.50mm 寬) 供應(yīng)商設(shè)備封裝:28-SOIC W 包裝:帶卷 (TR) 輸入數(shù)目和類型:2 個(gè)單端,單極
LTC2355CMSE-14#PBF 功能描述:IC ADC 14BIT 3.5MSPS 10-MSOP RoHS:是 類別:集成電路 (IC) >> 數(shù)據(jù)采集 - 模數(shù)轉(zhuǎn)換器 系列:- 標(biāo)準(zhǔn)包裝:1 系列:microPOWER™ 位數(shù):8 采樣率(每秒):1M 數(shù)據(jù)接口:串行,SPI? 轉(zhuǎn)換器數(shù)目:1 功率耗散(最大):- 電壓電源:模擬和數(shù)字 工作溫度:-40°C ~ 125°C 安裝類型:表面貼裝 封裝/外殼:24-VFQFN 裸露焊盤 供應(yīng)商設(shè)備封裝:24-VQFN 裸露焊盤(4x4) 包裝:Digi-Reel® 輸入數(shù)目和類型:8 個(gè)單端,單極 產(chǎn)品目錄頁面:892 (CN2011-ZH PDF) 其它名稱:296-25851-6
LTC2355CMSE-14#PBF 制造商:Linear Technology 功能描述:IC, ADC, 14BIT, 3.5MSPS, MSOP-10
LTC2355CMSE-14#TRPBF 功能描述:IC ADC 14BIT 3.5MSPS 10-MSOP RoHS:是 類別:集成電路 (IC) >> 數(shù)據(jù)采集 - 模數(shù)轉(zhuǎn)換器 系列:- 標(biāo)準(zhǔn)包裝:1,000 系列:- 位數(shù):12 采樣率(每秒):300k 數(shù)據(jù)接口:并聯(lián) 轉(zhuǎn)換器數(shù)目:1 功率耗散(最大):75mW 電壓電源:單電源 工作溫度:0°C ~ 70°C 安裝類型:表面貼裝 封裝/外殼:24-SOIC(0.295",7.50mm 寬) 供應(yīng)商設(shè)備封裝:24-SOIC 包裝:帶卷 (TR) 輸入數(shù)目和類型:1 個(gè)單端,單極;1 個(gè)單端,雙極