![](http://datasheet.mmic.net.cn/370000/L6926_datasheet_16703540/L6926_4.png)
L6926D
4/8
OPERATION DESCRIPTION
The main loop uses slope compensated PWM current mode architecture. Each cycle the high side MOSFET
is turned on, triggered by the oscillator, so that the current flowing through it (the same as the inductor current)
increases. When this current reaches the threshold (set by the output of the error amplifier E/A), the peak current
limit comparator PEAK_CL turns off the high side MOSFET and turns on the low side one until the next clock
cycle begins or the current flowing through it goes down to zero (ZERO CROSSING comparator). The peak in-
ductor current required to trigger PEAK_CL depends on the slope compensation signal and on the output of the
error amplifier.
In particular, the error amplifier output depends on the VFB pin voltage. When the output current increases, the
output capacitor is discharged and so the VFB pin decreases. This produces increase of the error amplifier out-
put, so allowing a higher value for the peak inductor current. For the same reason, when due to a load transient
the output current decreases, the error amplifier output goes low, so reducing the peak inductor current to meet
the new load requirements.
The slope compensation signal allows the loop stability also in high duty cycle conditions (see related section)
Figure 1. Device Block Diagram
Modes of Operation
Depending on the SYNC pin value the device can operate in low consumption or low noise mode. If the SYNC
pin is high (higher than 1.3V) the low consumption mode is selected while the low noise mode is selected if the
SYNC pin is low (lower than 0.5V).
Low Consumption Mode
In this mode of operation, at light load, the device operates discontinuously based on the COMP pin voltage, in
order to keep the efficiency very high also in these conditions. While the device is not switching the load dis-
charges the output capacitor and the output voltage goes down. When the feedback voltage goes lower than
the internal reference, the COMP pin voltage increases and when an internal threshold is reached, the device
starts to switch. In these conditions the peak current limit is set approximately in the range of 200mA-400mA,
depending on the slope compensation (see related section).
Once the device starts to switch the output capacitor is recharged. The feedback pin increases and, when it
reaches a value slightly higher than the reference voltage, the output of the error amplifier goes down until a
clamp is activated. At this point, the device stops to switch. In this phase, most of the internal circuitries are off,
so reducing the device consumption down to a typical value of 25
μ
A.
VCC
SYNC
COMP
P
GOOD
GND
DRIVER
GND
GND
GND
CL
CL
Vcc
CROSSING
CONTROL
OSCILLATOR
NOISE/
CONSUMPTION
LX
OVP
V
REF
FB
E/A
P
GOOD
PP
MOS
PN
MOS
SP
MOS
SN
MOS
Vcc
0.6V
V
REF
0.9V
SLOPE
RUN
PEAK
VALLEY
ZERO
LOOP
LOW
PP
PN
SP
SN