參數(shù)資料
型號(hào): ISL12027IV27AZ-T
廠商: Intersil
文件頁(yè)數(shù): 2/28頁(yè)
文件大?。?/td> 0K
描述: IC RTC/CALENDAR EEPROM 8-TSSOP
產(chǎn)品培訓(xùn)模塊: Solutions for Industrial Control Applications
標(biāo)準(zhǔn)包裝: 2,500
類型: 時(shí)鐘/日歷
特點(diǎn): 警報(bào)器,閏年,監(jiān)控器,監(jiān)視計(jì)時(shí)器
時(shí)間格式: HH:MM:SS(12/24 小時(shí))
數(shù)據(jù)格式: YY-MM-DD-dd
接口: I²C,2 線串口
電源電壓: 2.7 V ~ 5.5 V
電壓 - 電源,電池: 1.8 V ~ 5.5 V
工作溫度: -40°C ~ 85°C
安裝類型: 表面貼裝
封裝/外殼: 8-TSSOP(0.173",4.40mm 寬)
供應(yīng)商設(shè)備封裝: 8-TSSOP
包裝: 帶卷 (TR)
10
FN8232.8
August 12, 2010
Real Time Clock Operation
The Real Time Clock (RTC) uses an external 32.768kHz
quartz crystal to maintain an accurate internal representation
of the second, minute, hour, day, date, month and year. The
RTC has leap-year correction. The clock also corrects for
months having fewer than 31 days and has a bit that controls
24 hour or AM/PM format. When the ISL12027 powers up
after the loss of both VDD and VBAT, the clock will not
operate until at least one byte is written to the clock register.
Reading the Real Time Clock
The RTC is read by initiating a Read command and
specifying the address corresponding to the register of the
Real Time Clock. The RTC Registers can then be read in a
Sequential Read Mode. Since the clock runs continuously
and read takes a finite amount of time, there is a possibility
that the clock could change during the course of a read
operation. In this device, the time is latched by the read
command (falling edge of the clock on the ACK bit prior to
RTC data output) into a separate latch to avoid time changes
during the read operation. The clock continues to run.
Alarms occurring during a read are unaffected by the read
operation.
Writing to the Real Time Clock
The time and date may be set by writing to the RTC
registers. RTC Register should be written ONLY with Page
Write. To avoid changing the current time by an uncompleted
write operation, write to the all 8 bytes in one write operation.
When writing the RTC registers, the new time value is
loaded into a separate buffer at the falling edge of the clock
during the Acknowledge. This new RTC value is loaded into
the RTC Register by a stop bit at the end of a valid write
sequence. An invalid write operation aborts the time update
procedure and the contents of the buffer are discarded. After
a valid write operation, the RTC will reflect the newly loaded
data beginning with the next “one second” clock cycle after
the stop bit is written. The RTC continues to update the time
while an RTC register write is in progress and the RTC
continues to run during any non-volatile write sequences.
Accuracy of the Real Time Clock
The accuracy of the Real Time Clock depends on the
accuracy of the quartz crystal that is used as the time base
for the RTC. Since the resonant frequency of a crystal is
temperature dependent, the RTC performance will also be
dependent upon temperature. The frequency deviation of
the crystal is a function of the turnover temperature of the
crystal from the crystal’s nominal frequency. For example, a
>20ppm frequency deviation translates into an accuracy of
>1 minute per month. These parameters are available from
the crystal manufacturer. Intersil’s RTC family provides on-
chip crystal compensation networks to adjust
load-capacitance to tune oscillator frequency from -34ppm to
+80ppm when using a 12.5pF load crystal. For more detailed
information see “Application Section” on page 22.
Clock/Control Registers (CCR)
The Control/Clock Registers are located in an area separate
from the EEPROM array and are only accessible following a
slave byte of “1101111x” and reads or writes to addresses
[0000h:003Fh]. The clock/control memory map has memory
addresses from 0000h to 003Fh. The defined addresses are
described in Table 2. Writing to and reading from the
undefined addresses are not recommended.
CCR Access
The contents of the CCR can be modified by performing a
byte or a page write operation directly to any address in the
CCR. Prior to writing to the CCR (except the status register),
however, the WEL and RWEL bits must be set using a three
step process (see “Writing to the Clock/Control Registers” on
page 14).
The CCR is divided into 5 sections. These are:
1. Alarm 0 (8 bytes; non-volatile)
2. Alarm 1 (8 bytes; non-volatile)
3. Control (5 bytes; non-volatile)
4. Real Time Clock (8 bytes; volatile)
5. Status (1 byte; volatile)
Each register is read and written through buffers. The
non-volatile portion (or the counter portion of the RTC) is
updated only if RWEL is set and only after a valid write
operation and stop bit. A sequential read or page write
operation provides access to the contents of only one
section of the CCR per operation. Access to another section
requires a new operation. A read or write can begin at any
address in the CCR.
It is not necessary to set the RWEL bit prior to writing the
status register. Section 5 (status register) supports a single
byte read or write only. Continued reads or writes from this
section terminates the operation.
The state of the CCR can be read by performing a random
read at any address in the CCR at any time. This returns the
contents of that register location. Additional registers are
read by performing a sequential read. The read instruction
latches all Clock registers into a buffer, so an update of the
clock does not change the time being read. A sequential
read of the CCR will not result in the output of data from the
memory array. At the end of a read, the master supplies a
stop condition to end the operation and free the bus. After a
read of the CCR, the address remains at the previous
address +1 so the user can execute a current address read
of the CCR and continue reading the next Register.
Real Time Clock Registers (Volatile)
SC, MN, HR, DT, MO, YR: Clock/Calendar Registers
These registers depict BCD representations of the time. As
such, SC (Seconds) and MN (Minutes) range from 00 to 59,
HR (Hour) is 1 to 12 with an AM or PM indicator (H21 bit) or
ISL12027, ISL12027A
相關(guān)PDF資料
PDF描述
VI-2NL-MX-B1 CONVERTER MOD DC/DC 28V 75W
ISL12027IVZ-T IC RTC/CALENDAR EEPROM 8-TSSOP
VI-2NL-MW CONVERTER MOD DC/DC 28V 100W
ISL12027IVAZ-T IC RTC/CALENDAR EEPROM 8-TSSOP
VE-BNX-MV CONVERTER MOD DC/DC 5.2V 150W
相關(guān)代理商/技術(shù)參數(shù)
參數(shù)描述
ISL12027IV27Z 功能描述:實(shí)時(shí)時(shí)鐘 REAL TIME CLK/CLNDR W/EEPROM 2 7VSET RoHS:否 制造商:Microchip Technology 功能:Clock, Calendar. Alarm RTC 總線接口:I2C 日期格式:DW:DM:M:Y 時(shí)間格式:HH:MM:SS RTC 存儲(chǔ)容量:64 B 電源電壓-最大:5.5 V 電源電壓-最小:1.8 V 最大工作溫度:+ 85 C 最小工作溫度: 安裝風(fēng)格:Through Hole 封裝 / 箱體:PDIP-8 封裝:Tube
ISL12027IV27Z-T 功能描述:實(shí)時(shí)時(shí)鐘 REAL TIME CLK/CLNDR W/EEPROM 2 7VSET 8 RoHS:否 制造商:Microchip Technology 功能:Clock, Calendar. Alarm RTC 總線接口:I2C 日期格式:DW:DM:M:Y 時(shí)間格式:HH:MM:SS RTC 存儲(chǔ)容量:64 B 電源電壓-最大:5.5 V 電源電壓-最小:1.8 V 最大工作溫度:+ 85 C 最小工作溫度: 安裝風(fēng)格:Through Hole 封裝 / 箱體:PDIP-8 封裝:Tube
ISL12027IV30AZ 功能描述:實(shí)時(shí)時(shí)鐘 REAL TIME CLK/CLNDR W/EEPROM 3 09VSET RoHS:否 制造商:Microchip Technology 功能:Clock, Calendar. Alarm RTC 總線接口:I2C 日期格式:DW:DM:M:Y 時(shí)間格式:HH:MM:SS RTC 存儲(chǔ)容量:64 B 電源電壓-最大:5.5 V 電源電壓-最小:1.8 V 最大工作溫度:+ 85 C 最小工作溫度: 安裝風(fēng)格:Through Hole 封裝 / 箱體:PDIP-8 封裝:Tube
ISL12027IV30AZ-T 功能描述:實(shí)時(shí)時(shí)鐘 REAL TIME CLK/CLNDR W/EEPROM 3 09VSET RoHS:否 制造商:Microchip Technology 功能:Clock, Calendar. Alarm RTC 總線接口:I2C 日期格式:DW:DM:M:Y 時(shí)間格式:HH:MM:SS RTC 存儲(chǔ)容量:64 B 電源電壓-最大:5.5 V 電源電壓-最小:1.8 V 最大工作溫度:+ 85 C 最小工作溫度: 安裝風(fēng)格:Through Hole 封裝 / 箱體:PDIP-8 封裝:Tube
ISL12027IVAZ 功能描述:實(shí)時(shí)時(shí)鐘 REAL TIME CLK/CLNDR W/EEPROM 4 64VSET RoHS:否 制造商:Microchip Technology 功能:Clock, Calendar. Alarm RTC 總線接口:I2C 日期格式:DW:DM:M:Y 時(shí)間格式:HH:MM:SS RTC 存儲(chǔ)容量:64 B 電源電壓-最大:5.5 V 電源電壓-最小:1.8 V 最大工作溫度:+ 85 C 最小工作溫度: 安裝風(fēng)格:Through Hole 封裝 / 箱體:PDIP-8 封裝:Tube