7
COMMERCIAL AND INDUSTRIAL
TEMPERATURE RANGES
IDT72V281/72V291 3.3V CMOS SUPERSYNC FIFOTM
65,536 x 9 and 131,072 x 9
When configured in IDT Standard mode, the
EF and FF outputs are
double register-buffered outputs.
Relevant timing diagrams for IDT Standard mode can be found in Figure
7, 8 and 11.
FIRST WORD FALL THROUGH MODE (FWFT)
In this mode, the status flags,
IR, PAF, HF, PAE, and OR operate in
the manner outlined in Table 2. To write data into to the FIFO,
WEN must
be LOW. Data presented to the DATA IN lines will be clocked into the FIFO
on subsequent transitions of WCLK. After the first write is performed, the
Output Ready (
OR) flag will go LOW. Subsequent writes will continue to fill
up the FIFO.
PAE will go HIGH after n + 2 words have been loaded into the
FIFO, where n is the empty offset value. The default setting for this value
is stated in the footnote of Table 2. This parameter is also user program-
mable. See section on Programmable Flag Offset Loading.
If one continued to write data into the FIFO, and we assumed no read
operations were taking place, the
HF would toggle to LOW once the
32,770th word for the IDT72V281 and 65,538th word for the IDT72V291,
respectively was written into the FIFO. Continuing to write data into the
FIFO will cause the
PAF to go LOW. Again, if no reads are performed, the
PAFwillgoLOWafter(65,537-m)writesfortheIDT72V281 and(131,073-m)
writes for the IDT72V291, where m is the full offset value. The default setting
for this value is stated in the footnote of Table 2.
When the FIFO is full, the Input Ready (
IR) flag will go HIGH, inhibiting
further write operations. If no reads are performed after a reset,
IR will go
HIGH after D writes to the FIFO. D = 65,537 writes for the IDT72V281 and
131,073 writes for the IDT72V291, respectively. Note that the additional
word in FWFT mode is due to the capacity of the memory plus output
register.
If the FIFO is full, the first read operation will cause the
IR flag to go LOW.
Subsequent read operations will cause the
PAF and HF to go HIGH at the
conditions described in Table 2. If further read operations occur, without
write operations, the
PAE will go LOW when there are n + 1 words in the
FIFO, where n is the empty offset value. Continuing read operations will
cause the FIFO to become empty. When the last word has been read from
the FIFO,
OR will go HIGH inhibiting further read operations. REN is
ignored when the FIFO is empty.
When configured in FWFT mode, the
OR flag output is triple register-
buffered, and the
IR flag output is double register-buffered.
Relevant timing diagrams for FWFT mode can be found in Figure 9, 10
and 12.
PROGRAMMING FLAG OFFSETS
Full and Empty Flag offset values are user programmable. The
IDT72V281/72V291 has internal registers for these offsets. Default settings
are stated in the footnotes of Table 1 and Table 2. Offset values can be
programmed into the FIFO in one of two ways; serial or parallel loading
method. The selection of the loading method is done using the
LD (Load)
pin. During Master Reset, the state of the
LD input determines whether
serial or parallel flag offset programming is enabled. A HIGH on
LD during
Master Reset selects serial loading of offset values and in addition, sets a
default
PAE offset value of 3FFH (a threshold 1,023 words from the empty
boundary), and a default
PAF offset value of 3FFH (a threshold 1,023
words from the full boundary). A LOW on
LD during Master Reset selects
parallel loading of offset values, and in addition, sets a default
PAE offset
value of 07FH (a threshold 127 words from the empty boundary), and a
default
PAF offset value of 07FH (a threshold 127 words from the full
boundary). See Figure 3, Offset Register Location and Default Values.
FUNCTIONAL DESCRIPTION
TIMING MODES: IDT STANDARD vs FIRST WORD FALL THROUGH
(FWFT) MODE
The IDT72V281/72V291 support two different timing modes of opera-
tion: IDT Standard mode or First Word Fall Through (FWFT) mode. The
selection of which mode will operate is determined during Master Reset,
by the state of the FWFT/SI input.
If, at the time of Master Reset, FWFT/SI is LOW, then IDT Standard
mode will be selected. This mode uses the Empty Flag (
EF) to indicate
whether or not there are any words present in the FIFO. It also uses the Full
Flag function (
FF) to indicate whether or not the FIFO has any free space
for writing. In IDT Standard mode, every word read from the FIFO, including
the first, must be requested using the Read Enable (
REN) and RCLK.
If, at the time of Master Reset, FWFT/SI is HIGH, then FWFT mode will
be selected. This mode uses Output Ready (
OR) to indicate whether or not
there is valid data at the data outputs (Qn). It also uses Input Ready (
IR)
to indicate whether or not the FIFO has any free space for writing. In the
FWFT mode, the first word written to an empty FIFO goes directly to Qn after
three RCLK rising edges,
REN = LOW is not necessary. Subsequent
words must be accessed using the Read Enable (
REN) and RCLK.
Various signals, both input and output signals operate differently de-
pending on which timing mode is in effect.
IDT STANDARD MODE
In this mode, the status flags,
FF, PAF, HF, PAE, and EF operate in
the manner outlined in Table 1. To write data into to the FIFO, Write Enable
(
WEN) must be LOW. Data presented to the DATA IN lines will be clocked
into the FIFO on subsequent transitions of the Write Clock (WCLK). After the
first write is performed, the Empty Flag (
EF) will go HIGH. Subsequent
writes will continue to fill up the FIFO. The Programmable Almost-Empty
flag (
PAE) will go HIGH after n + 1 words have been loaded into the FIFO,
where n is the empty offset value. The default setting for this value is stated
in the footnote of Table 1. This parameter is also user programmable. See
section on Programmable Flag Offset Loading.
If one continued to write data into the FIFO, and we assumed no read
operations were taking place, the Half-Full flag (
HF) would toggle to LOW
once the 32,769th word for IDT72V281 and 65,537th word for IDT72V291
respectively was written into the FIFO. Continuing to write data into the
FIFO will cause the Programmable Almost-Full flag (
PAF) to go LOW.
Again, if no reads are performed, the
PAF will go LOW after (65,536-m)
writes for the IDT72V281 and (131,072-m) writes for the IDT72V291. The
offset “m” is the full offset value. The default setting for this value is stated
in the footnote of Table 1. This parameter is also user programmable. See
section on Programmable Flag Offset Loading.
When the FIFO is full, the Full Flag (
FF) will go LOW, inhibiting further
write operations. If no reads are performed after a reset,
FF will go LOW
after D writes to the FIFO. D = 65,536 writes for the IDT72V281 and
131,072 for the IDT72V291, respectively.
If the FIFO is full, the first read operation will cause
FF to go HIGH.
Subsequent read operations will cause
PAF and HF to go HIGH at the
conditions described in Table 1. If further read operations occur, without
write operations,
PAE will go LOW when there are n words in the FIFO,
where n is the empty offset value. Continuing read operations will cause the
FIFO to become empty. When the last word has been read from the FIFO,
the
EF will go LOW inhibiting further read operations. RENis ignored when
the FIFO is empty.