7
FN3393.8
June 2, 2006
Application Information
Optimum Feedback Resistor
The plots of inverting and non-inverting frequency response,
see Figure 8 and Figure 9 in the typical performance section,
illustrate the performance of the HA5023 in various closed
loop gain configurations. Although the bandwidth
dependency on closed loop gain isn’t as severe as that of a
voltage feedback amplifier, there can be an appreciable
decrease in bandwidth at higher gains. This decrease may
be minimized by taking advantage of the current feedback
amplifier’s unique relationship between bandwidth and RF.
All current feedback amplifiers require a feedback resistor,
even for unity gain applications, and RF, in conjunction with
the internal compensation capacitor, sets the dominant pole
of the frequency response. Thus, the amplifier’s bandwidth is
inversely proportional to RF. The HA5023 design is
optimized for a 1000
R
F at a gain of +1. Decreasing RF in
a unity gain application decreases stability, resulting in
excessive peaking and overshoot. At higher gains the
amplifier is more stable, so RF can be decreased in a trade-
off of stability for bandwidth.
The table below lists recommended RF values for various
gains, and the expected bandwidth.
PC Board Layout
The frequency response of this amplifier depends greatly on
the amount of care taken in designing the PC board. The use
of low inductance components such as chip resistors and
chip capacitors is strongly recommended. If leaded
components are used the leads must be kept short
especially for the power supply decoupling components and
those components connected to the inverting input.
Attention must be given to decoupling the power supplies. A
large value (10
F) tantalum or electrolytic capacitor in
parallel with a small value (0.1
F) chip capacitor works well
in most cases.
A ground plane is strongly recommended to control noise.
Care must also be taken to minimize the capacitance to
ground seen by the amplifier’s inverting input (-IN). The
larger this capacitance, the worse the gain peaking, resulting
in pulse overshoot and possible instability. It is
recommended that the ground plane be removed under
traces connected to -IN, and that connections to -IN be kept
as short as possible to minimize the capacitance from this
node to ground.
Driving Capacitive Loads
Capacitive loads will degrade the amplifier’s phase margin
resulting in frequency response peaking and possible
oscillations. In most cases the oscillation can be avoided by
placing an isolation resistor (R) in series with the output as
shown in Figure 6.
The selection criteria for the isolation resistor is highly
dependent on the load, but 27
has been determined to be
a good starting value.
Power Dissipation Considerations
Due to the high supply current inherent in dual amplifiers, care
must be taken to insure that the maximum junction
temperature (TJ, see Absolute Maximum Ratings) is not
exceeded. Figure 7 shows the maximum ambient
temperature versus supply voltage for the available package
styles (Plastic DIP, SOIC). At
±5V
DC quiescent operation both
package styles may be operated over the full industrial range
of -40°C to 85°C. It is recommended that thermal calculations,
which take into account output power, be performed by the
designer.
GAIN
(ACL)RF ()
BANDWIDTH
(MHz)
-1
750
100
+1
1000
125
+2
681
95
+5
1000
52
+10
383
65
-10
750
22
VIN
VOUT
CL
RT
+
-
RI
RF
R
FIGURE 6. PLACEMENT OF THE OUTPUT ISOLATION
RESISTOR, R
100
5
7
9
11
13
15
140
130
120
110
100
90
80
SUPPLY VOLTAGE (
±V)
PDIP
SOIC
MAX
AMBI
ENT
TE
MPERA
T
U
R
E
(°
C)
50
60
70
FIGURE 7. MAXIMUM OPERATING AMBIENT TEMPERATURE
vs SUPPLY VOLTAGE
HA5023