參數(shù)資料
型號(hào): CY7C1246V18-375BZC
廠商: CYPRESS SEMICONDUCTOR CORP
元件分類: DRAM
英文描述: 36-Mbit DDR-II+ SRAM 2-Word Burst Architecture (2.0 Cycle Read Latency)
中文描述: 4M X 8 DDR SRAM, 0.45 ns, PBGA165
封裝: 15 X 17 MM, 1.40 MM HEIGHT, MO-216, FBGA-165
文件頁(yè)數(shù): 13/27頁(yè)
文件大?。?/td> 1037K
代理商: CY7C1246V18-375BZC
CY7C1246V18
CY7C1257V18
CY7C1248V18
CY7C1250V18
Document Number: 001-06348 Rev. *C
Page 13 of 27
IDCODE
The IDCODE instruction causes a vendor-specific, 32-bit code
to be loaded into the instruction register. It also places the
instruction register between the TDI and TDO pins and
enables the IDCODE to be shifted out of the device when the
TAP controller enters the Shift-DR state. The IDCODE
instruction is loaded into the instruction register upon power
up or whenever the TAP controller is in a Test-Logic-Reset
state.
SAMPLE Z
The SAMPLE Z instruction causes the boundary scan register
to be connected between the TDI and TDO pins when the TAP
controller is in a Shift-DR state. The SAMPLE Z command puts
the output bus into a High-Z state until the next command is
issued during the Update-IR state.
SAMPLE/PRELOAD
SAMPLE/PRELOAD is a 1149.1 mandatory instruction. When
the SAMPLE/PRELOAD instructions are loaded into the
instruction register and the TAP controller is in the Capture-DR
state, a snapshot of data on the inputs and output pins is
captured in the boundary scan register.
Be aware that the TAP controller clock can only operate at a
frequency up to 20 MHz, while the SRAM clock operates more
than an order of magnitude faster. Because there is a large
difference in the clock frequencies, it is possible that during the
Capture-DR state, an input or output may undergo a transition.
The TAP may then try to capture a signal while in transition
(metastable state). This does not harm the device, but there is
no guarantee as to the value that is captured. Repeatable
results may not be possible.
To guarantee that the boundary scan register captures the
correct value of a signal, the SRAM signal must be stabilized
long enough to meet the TAP controller's capture setup plus
hold times (t
CS
and t
CH
). The SRAM clock input might not be
captured correctly if there is no way in a design to stop (or
slow) the clock during a SAMPLE/PRELOAD instruction. If this
is an issue, it is still possible to capture all other signals and
simply ignore the value of the CK and CK captured in the
boundary scan register.
After the data is captured, it is possible to shift out the data by
putting the TAP into the Shift-DR state. This places the
boundary scan register between the TDI and TDO pins.
PRELOAD enables an initial data pattern to be placed at the
latched parallel outputs of the boundary scan register cells
before the selection of another boundary scan test operation.
The shifting of data for the SAMPLE and PRELOAD phases
can occur concurrently when required — that is, while data
captured is shifted out, the preloaded data can be shifted in.
BYPASS
When the BYPASS instruction is loaded in the instruction
register and the TAP is placed in a Shift-DR state, the bypass
register is placed between the TDI and TDO pins. The
advantage of the BYPASS instruction is that it shortens the
boundary scan path when multiple devices are connected
together on a board.
EXTEST
The EXTEST instruction enables the preloaded data to be
driven out through the system output pins. This instruction also
selects the boundary scan register to be connected for serial
access between the TDI and TDO in the Shift-DR controller
state.
EXTEST Output Bus Tri-State
IEEE Standard 1149.1 mandates that the TAP controller be
able to put the output bus into a tri-state mode.
The boundary scan register has a special bit located at bit
#108. When this scan cell, called the “extest output bus
tri-state,” is latched into the preload register during the
Update-DR state in the TAP controller, it directly controls the
state of the output (Q-bus) pins, when the EXTEST is entered
as the current instruction. When HIGH, it enables the output
buffers to drive the output bus. When LOW, this bit places the
output bus into a High-Z condition.
This bit can be set by entering the SAMPLE/PRELOAD or
EXTEST command, and then shifting the desired bit into that
cell, during the Shift-DR state. During Update-DR, the value
loaded into that shift-register cell latches into the preload
register. When the EXTEST instruction is entered, this bit
directly controls the output Q-bus pins. Note that this bit is
preset HIGH to enable the output when the device is
powered-up, and also when the TAP controller is in the
Test-Logic-Reset state.
Reserved
These instructions are not implemented but are reserved for
future use. Do not use these instructions.
[+] Feedback
相關(guān)PDF資料
PDF描述
CY7C1246V18-375BZI 36-Mbit DDR-II+ SRAM 2-Word Burst Architecture (2.0 Cycle Read Latency)
CY7C1246V18-375BZXC 36-Mbit DDR-II+ SRAM 2-Word Burst Architecture (2.0 Cycle Read Latency)
CY7C1246V18-375BZXI 36-Mbit DDR-II+ SRAM 2-Word Burst Architecture (2.0 Cycle Read Latency)
CY7C1248V18 36-Mbit DDR-II+ SRAM 2-Word Burst Architecture (2.0 Cycle Read Latency)
CY7C1248V18-300BZC 36-Mbit DDR-II+ SRAM 2-Word Burst Architecture (2.0 Cycle Read Latency)
相關(guān)代理商/技術(shù)參數(shù)
參數(shù)描述
CY7C12481KV18-400BZC 功能描述:靜態(tài)隨機(jī)存取存儲(chǔ)器 2M X 18 400MHz DDR II+ 靜態(tài)隨機(jī)存取存儲(chǔ)器 RoHS:否 制造商:Cypress Semiconductor 存儲(chǔ)容量:16 Mbit 組織:1 M x 16 訪問(wèn)時(shí)間:55 ns 電源電壓-最大:3.6 V 電源電壓-最小:2.2 V 最大工作電流:22 uA 最大工作溫度:+ 85 C 最小工作溫度:- 40 C 安裝風(fēng)格:SMD/SMT 封裝 / 箱體:TSOP-48 封裝:Tray
CY7C12481KV18-400BZXC 功能描述:IC SRAM 36MBIT 400MHZ 165-FPBGA RoHS:是 類別:集成電路 (IC) >> 存儲(chǔ)器 系列:- 標(biāo)準(zhǔn)包裝:150 系列:- 格式 - 存儲(chǔ)器:EEPROMs - 串行 存儲(chǔ)器類型:EEPROM 存儲(chǔ)容量:4K (2 x 256 x 8) 速度:400kHz 接口:I²C,2 線串口 電源電壓:2.5 V ~ 5.5 V 工作溫度:-40°C ~ 85°C 封裝/外殼:8-VFDFN 裸露焊盤 供應(yīng)商設(shè)備封裝:8-DFN(2x3) 包裝:管件 產(chǎn)品目錄頁(yè)面:1445 (CN2011-ZH PDF)
CY7C1248KV18-400BZC 功能描述:靜態(tài)隨機(jī)存取存儲(chǔ)器 36MB (2Mx18) 1.8v 400MHz DDR II 靜態(tài)隨機(jī)存取存儲(chǔ)器 RoHS:否 制造商:Cypress Semiconductor 存儲(chǔ)容量:16 Mbit 組織:1 M x 16 訪問(wèn)時(shí)間:55 ns 電源電壓-最大:3.6 V 電源電壓-最小:2.2 V 最大工作電流:22 uA 最大工作溫度:+ 85 C 最小工作溫度:- 40 C 安裝風(fēng)格:SMD/SMT 封裝 / 箱體:TSOP-48 封裝:Tray
CY7C1248KV18-400BZXC 功能描述:靜態(tài)隨機(jī)存取存儲(chǔ)器 36MB (2Mx18) 1.8v 400MHz DDR II 靜態(tài)隨機(jī)存取存儲(chǔ)器 RoHS:否 制造商:Cypress Semiconductor 存儲(chǔ)容量:16 Mbit 組織:1 M x 16 訪問(wèn)時(shí)間:55 ns 電源電壓-最大:3.6 V 電源電壓-最小:2.2 V 最大工作電流:22 uA 最大工作溫度:+ 85 C 最小工作溫度:- 40 C 安裝風(fēng)格:SMD/SMT 封裝 / 箱體:TSOP-48 封裝:Tray
CY7C1248KV18-450BZXC 功能描述:靜態(tài)隨機(jī)存取存儲(chǔ)器 36MB (2Mx18) 1.8v 450MHz DDR II 靜態(tài)隨機(jī)存取存儲(chǔ)器 RoHS:否 制造商:Cypress Semiconductor 存儲(chǔ)容量:16 Mbit 組織:1 M x 16 訪問(wèn)時(shí)間:55 ns 電源電壓-最大:3.6 V 電源電壓-最小:2.2 V 最大工作電流:22 uA 最大工作溫度:+ 85 C 最小工作溫度:- 40 C 安裝風(fēng)格:SMD/SMT 封裝 / 箱體:TSOP-48 封裝:Tray