參數(shù)資料
型號(hào): BT136X_SERIES
英文描述: Triacs
中文描述: 雙向可控硅
文件頁(yè)數(shù): 187/224頁(yè)
文件大?。?/td> 2697K
代理商: BT136X_SERIES
第1頁(yè)第2頁(yè)第3頁(yè)第4頁(yè)第5頁(yè)第6頁(yè)第7頁(yè)第8頁(yè)第9頁(yè)第10頁(yè)第11頁(yè)第12頁(yè)第13頁(yè)第14頁(yè)第15頁(yè)第16頁(yè)第17頁(yè)第18頁(yè)第19頁(yè)第20頁(yè)第21頁(yè)第22頁(yè)第23頁(yè)第24頁(yè)第25頁(yè)第26頁(yè)第27頁(yè)第28頁(yè)第29頁(yè)第30頁(yè)第31頁(yè)第32頁(yè)第33頁(yè)第34頁(yè)第35頁(yè)第36頁(yè)第37頁(yè)第38頁(yè)第39頁(yè)第40頁(yè)第41頁(yè)第42頁(yè)第43頁(yè)第44頁(yè)第45頁(yè)第46頁(yè)第47頁(yè)第48頁(yè)第49頁(yè)第50頁(yè)第51頁(yè)第52頁(yè)第53頁(yè)第54頁(yè)第55頁(yè)第56頁(yè)第57頁(yè)第58頁(yè)第59頁(yè)第60頁(yè)第61頁(yè)第62頁(yè)第63頁(yè)第64頁(yè)第65頁(yè)第66頁(yè)第67頁(yè)第68頁(yè)第69頁(yè)第70頁(yè)第71頁(yè)第72頁(yè)第73頁(yè)第74頁(yè)第75頁(yè)第76頁(yè)第77頁(yè)第78頁(yè)第79頁(yè)第80頁(yè)第81頁(yè)第82頁(yè)第83頁(yè)第84頁(yè)第85頁(yè)第86頁(yè)第87頁(yè)第88頁(yè)第89頁(yè)第90頁(yè)第91頁(yè)第92頁(yè)第93頁(yè)第94頁(yè)第95頁(yè)第96頁(yè)第97頁(yè)第98頁(yè)第99頁(yè)第100頁(yè)第101頁(yè)第102頁(yè)第103頁(yè)第104頁(yè)第105頁(yè)第106頁(yè)第107頁(yè)第108頁(yè)第109頁(yè)第110頁(yè)第111頁(yè)第112頁(yè)第113頁(yè)第114頁(yè)第115頁(yè)第116頁(yè)第117頁(yè)第118頁(yè)第119頁(yè)第120頁(yè)第121頁(yè)第122頁(yè)第123頁(yè)第124頁(yè)第125頁(yè)第126頁(yè)第127頁(yè)第128頁(yè)第129頁(yè)第130頁(yè)第131頁(yè)第132頁(yè)第133頁(yè)第134頁(yè)第135頁(yè)第136頁(yè)第137頁(yè)第138頁(yè)第139頁(yè)第140頁(yè)第141頁(yè)第142頁(yè)第143頁(yè)第144頁(yè)第145頁(yè)第146頁(yè)第147頁(yè)第148頁(yè)第149頁(yè)第150頁(yè)第151頁(yè)第152頁(yè)第153頁(yè)第154頁(yè)第155頁(yè)第156頁(yè)第157頁(yè)第158頁(yè)第159頁(yè)第160頁(yè)第161頁(yè)第162頁(yè)第163頁(yè)第164頁(yè)第165頁(yè)第166頁(yè)第167頁(yè)第168頁(yè)第169頁(yè)第170頁(yè)第171頁(yè)第172頁(yè)第173頁(yè)第174頁(yè)第175頁(yè)第176頁(yè)第177頁(yè)第178頁(yè)第179頁(yè)第180頁(yè)第181頁(yè)第182頁(yè)第183頁(yè)第184頁(yè)第185頁(yè)第186頁(yè)當(dāng)前第187頁(yè)第188頁(yè)第189頁(yè)第190頁(yè)第191頁(yè)第192頁(yè)第193頁(yè)第194頁(yè)第195頁(yè)第196頁(yè)第197頁(yè)第198頁(yè)第199頁(yè)第200頁(yè)第201頁(yè)第202頁(yè)第203頁(yè)第204頁(yè)第205頁(yè)第206頁(yè)第207頁(yè)第208頁(yè)第209頁(yè)第210頁(yè)第211頁(yè)第212頁(yè)第213頁(yè)第214頁(yè)第215頁(yè)第216頁(yè)第217頁(yè)第218頁(yè)第219頁(yè)第220頁(yè)第221頁(yè)第222頁(yè)第223頁(yè)第224頁(yè)
Application Notes
AN1009
2002 Teccor Electronics
Thyristor Product Catalog
AN1009 - 3
http://www.teccor.com
+1 972-580-7777
Double-exponential Impulse Waveform
A double-exponential impulse waveform or waveshape of current
or voltage is designated by a combination of two numbers (t
/t
or
t
r
x t
d
μs). The first number is an exponential rise time (t
r
) or wave
front and the second number is an exponential decay time (t
) or
wave tail. The rise time (t
) is the maximum rise time permitted.
The decay time (t
d
) is the minimum time permitted. Both the t
r
and
the t
are in the same units of time, typically microseconds, des-
ignated at the end of the waveform description as defined by
ANSI/IEEE C62.1-1989.
The rise time (t
) of a current waveform is 1.25 times the time for
the current to increase from 10% to 90% of peak value. See Fig-
ure AN1009.5.
t
r
= Rise Time = 1.25
[t
c
– t
a
]
t
r
= 1.25
[t(0.9 I
PK
) – t(0.1 I
PK
)] = T
1
– T
0
The rise time (t
) of a voltage waveform is 1.67 times the time for
the voltage to increase from 30% to 90% of peak value. (Figure
AN1009.5)
t
r
= Rise Time = 1.67
[t
c
– t
b
]
t
r
= 1.67
[t(0.9 V
PK
) – t(0.3 V
PK
)] = T
1
– T
0
The decay time (t
) of a waveform is the time from virtual zero
(10% of peak for current or 30% of peak for voltage) to the time
at which one-half (50%) of the peak value is reached on the wave
tail. (Figure AN1009.5)
Current Waveform t
d
= Decay Time
= [t(0.5 I
PK
) – t(0.1 I
PK
)] = T
2
– T
0
Voltage Waveform t
d
= Decay Time
= [t(0.5 V
PK
) – t(0.3 V
PK
)] = T
2
– T
0
Figure AN1009.5
Double-exponential Impulse Waveform
Failure Modes of Thyristor
Thyristor failures may be broadly classified as either degrading
or catastrophic. A degrading type of failure is defined as a
change in some characteristic which may or may not cause a cat-
astrophic failure, but could show up as a latent failure. Cata-
strophic failure is when a device exhibits a sudden change in
characteristic that renders it inoperable. To minimize degrading
and catastrophic failures, devices must be operated within maxi-
mum ratings at all times.
Degradation Failures
A significant change of on-state, gate, or switching characteris-
tics is quite rare. The most vulnerable characteristic is blocking
voltage. This type of degradation increases with rising operating
voltage and temperature levels.
Catastrophic Failures
A catastrophic failure can occur whenever the thyristor is oper-
ated beyond its published ratings. The most common failure
mode is an electrical short between the main terminals, although
a triac can fail in a half-wave condition. It is possible, but not
probable, that the resulting short-circuit current could melt the
internal parts of the device which could result in an open circuit.
Failure Causes
Most thyristor failures occur due to exceeding the maximum
operating ratings of the device. Overvoltage or overcurrent oper-
ations are the most probable cause for failure. Overvoltage fail-
ures may be due to excessive voltage transients or may also
occur if inadequate cooling allows the operating temperature to
rise above the maximum allowable junction temperature. Over-
current failures are generally caused by improper fusing or circuit
protection, surge current from load initiation, load abuse, or load
failure. Another common cause of device failure is incorrect han-
dling procedures used in the manufacturing process. Mechanical
damage in the form of excessive mounting torque and/or force
applied to the terminals or leads can transmit stresses to the
internal thyristor chip and cause cracks in the chip which may not
show up until the device is thermally cycled.
Prevention of Failures
Careful selection of the correct device for the application’s oper-
ating parameters and environment will go a long way toward
extending the operating life of the thyristor. Good design practice
should also limit the maximum current through the main terminals
to 75% of the device rating. Correct mounting and forming of the
leads also help ensure against infant mortality and latent failures.
The two best ways to ensure long life of a thyristor is by proper
heat sink methods and correct voltage rating selection for worst
case conditions. Overheating, overvoltage, and surge currents
are the main killers of semiconductors.
Most Common Thyristor Failure Mode
When a thyristor is electrically or physically abused and fails either
by degradation or a catastrophic means, it will short (full-wave or
half-wave) as its normal failure mode. Rarely does it fail open
circuit. The circuit designer should add line breaks, fuses, over-
temperature interrupters or whatever is necessary to protect the
end user and property if a shorted or partially shorted thyristor
offers a safety hazard.
Virtual Start of Wavefront
(Peak Value)
100%
90%
50%
0%
10%
30%
ta
tb
T0
tcT1
T2
Time
P
Decay = e
-
t
1.44 T2
相關(guān)PDF資料
PDF描述
BT136X_SERIES_D Triacs logic level
BT136X_SERIES_E Triacs sensitive gate
BT137-700E TRIAC|700V V(DRM)|8A I(T)RMS|TO-220
BT137-700G TRIAC|700V V(DRM)|8A I(T)RMS|TO-220
BT137B_SERIES Triacs
相關(guān)代理商/技術(shù)參數(shù)
參數(shù)描述
BT136XSERIESD 制造商:PHILIPS 制造商全稱:NXP Semiconductors 功能描述:Triacs logic level
BT136XSERIESE 制造商:PHILIPS 制造商全稱:NXP Semiconductors 功能描述:Triacs sensitive gate
BT137 制造商:PHILIPS 制造商全稱:NXP Semiconductors 功能描述:Triacs logic level
BT137_SERIES 制造商:未知廠家 制造商全稱:未知廠家 功能描述:Triacs
BT137_SERIES_E 制造商:未知廠家 制造商全稱:未知廠家 功能描述:Triacs sensitive gate