參數(shù)資料
型號(hào): BT136M-800F
廠商: NXP SEMICONDUCTORS
元件分類: 晶閘管
英文描述: Octal Registered Transceivers with 3-State Outputs 24-SOIC -40 to 85
中文描述: 800 V, 4 A, 4 QUADRANT LOGIC LEVEL TRIAC, TO-252
封裝: PLASTIC, SOT-428, 3 PIN
文件頁(yè)數(shù): 135/224頁(yè)
文件大?。?/td> 2697K
代理商: BT136M-800F
第1頁(yè)第2頁(yè)第3頁(yè)第4頁(yè)第5頁(yè)第6頁(yè)第7頁(yè)第8頁(yè)第9頁(yè)第10頁(yè)第11頁(yè)第12頁(yè)第13頁(yè)第14頁(yè)第15頁(yè)第16頁(yè)第17頁(yè)第18頁(yè)第19頁(yè)第20頁(yè)第21頁(yè)第22頁(yè)第23頁(yè)第24頁(yè)第25頁(yè)第26頁(yè)第27頁(yè)第28頁(yè)第29頁(yè)第30頁(yè)第31頁(yè)第32頁(yè)第33頁(yè)第34頁(yè)第35頁(yè)第36頁(yè)第37頁(yè)第38頁(yè)第39頁(yè)第40頁(yè)第41頁(yè)第42頁(yè)第43頁(yè)第44頁(yè)第45頁(yè)第46頁(yè)第47頁(yè)第48頁(yè)第49頁(yè)第50頁(yè)第51頁(yè)第52頁(yè)第53頁(yè)第54頁(yè)第55頁(yè)第56頁(yè)第57頁(yè)第58頁(yè)第59頁(yè)第60頁(yè)第61頁(yè)第62頁(yè)第63頁(yè)第64頁(yè)第65頁(yè)第66頁(yè)第67頁(yè)第68頁(yè)第69頁(yè)第70頁(yè)第71頁(yè)第72頁(yè)第73頁(yè)第74頁(yè)第75頁(yè)第76頁(yè)第77頁(yè)第78頁(yè)第79頁(yè)第80頁(yè)第81頁(yè)第82頁(yè)第83頁(yè)第84頁(yè)第85頁(yè)第86頁(yè)第87頁(yè)第88頁(yè)第89頁(yè)第90頁(yè)第91頁(yè)第92頁(yè)第93頁(yè)第94頁(yè)第95頁(yè)第96頁(yè)第97頁(yè)第98頁(yè)第99頁(yè)第100頁(yè)第101頁(yè)第102頁(yè)第103頁(yè)第104頁(yè)第105頁(yè)第106頁(yè)第107頁(yè)第108頁(yè)第109頁(yè)第110頁(yè)第111頁(yè)第112頁(yè)第113頁(yè)第114頁(yè)第115頁(yè)第116頁(yè)第117頁(yè)第118頁(yè)第119頁(yè)第120頁(yè)第121頁(yè)第122頁(yè)第123頁(yè)第124頁(yè)第125頁(yè)第126頁(yè)第127頁(yè)第128頁(yè)第129頁(yè)第130頁(yè)第131頁(yè)第132頁(yè)第133頁(yè)第134頁(yè)當(dāng)前第135頁(yè)第136頁(yè)第137頁(yè)第138頁(yè)第139頁(yè)第140頁(yè)第141頁(yè)第142頁(yè)第143頁(yè)第144頁(yè)第145頁(yè)第146頁(yè)第147頁(yè)第148頁(yè)第149頁(yè)第150頁(yè)第151頁(yè)第152頁(yè)第153頁(yè)第154頁(yè)第155頁(yè)第156頁(yè)第157頁(yè)第158頁(yè)第159頁(yè)第160頁(yè)第161頁(yè)第162頁(yè)第163頁(yè)第164頁(yè)第165頁(yè)第166頁(yè)第167頁(yè)第168頁(yè)第169頁(yè)第170頁(yè)第171頁(yè)第172頁(yè)第173頁(yè)第174頁(yè)第175頁(yè)第176頁(yè)第177頁(yè)第178頁(yè)第179頁(yè)第180頁(yè)第181頁(yè)第182頁(yè)第183頁(yè)第184頁(yè)第185頁(yè)第186頁(yè)第187頁(yè)第188頁(yè)第189頁(yè)第190頁(yè)第191頁(yè)第192頁(yè)第193頁(yè)第194頁(yè)第195頁(yè)第196頁(yè)第197頁(yè)第198頁(yè)第199頁(yè)第200頁(yè)第201頁(yè)第202頁(yè)第203頁(yè)第204頁(yè)第205頁(yè)第206頁(yè)第207頁(yè)第208頁(yè)第209頁(yè)第210頁(yè)第211頁(yè)第212頁(yè)第213頁(yè)第214頁(yè)第215頁(yè)第216頁(yè)第217頁(yè)第218頁(yè)第219頁(yè)第220頁(yè)第221頁(yè)第222頁(yè)第223頁(yè)第224頁(yè)
Application Notes
AN1003
2002 Teccor Electronics
Thyristor Product Catalog
AN1003 - 3
http://www.teccor.com
+1 972-580-7777
Control Characteristics
A relaxation oscillator is the simplest and most common control
circuit for phase control. Figure AN1003.7 illustrates this circuit
as it would be used with a thyristor. Turn-on of the thyristor
occurs when the capacitor is charged through the resistor from a
voltage or current source until the breakover voltage of the
switching device is reached. Then, the switching device changes
to its on state, and the capacitor is discharged through the thyris-
tor gate. Trigger devices used are neon bulbs, unijunction tran-
sistors, and three-, four-, or five-layer semiconductor trigger
devices. Phase control of the output waveform is obtained by
varying the RC time constant of the charging circuit so the trigger
device breakdown occurs at different phase angles within the
controlled half or full cycle.
Figure AN1003.7
Relaxation Oscillator Thyristor Trigger Circuit
Figure AN1003.8 shows the capacitor voltage-time characteristic
if the relaxation oscillator is to be operated from a pure DC
source.
Figure AN1003.8
Capacitor Charging from DC Source
Usually, the design starting point is the selection of a capacitance
value which will reliably trigger the thyristor when the capacitance
is discharged. Trigger devices and thyristor gate triggering char-
acteristics play a part in the selection. All the device characteris-
tics are not always completely specified in applications, so
experimental determination is sometimes needed.
Upon final selection of the capacitor, the curve shown in Figure
AN1003.8 can be used in determining the charging resistance
needed to obtain the desired control characteristics.
Many circuits begin each half-cycle with the capacitor voltage at
or near zero. However, most circuits leave a relatively large
residual voltage on the capacitor after discharge. Therefore, the
charging resistor must be determined on the basis of additional
charge necessary to raise the capacitor to trigger potential.
For example, assume that we want to trigger an S2010L SCR
with a 32 V trigger diac. A 0.1 μF capacitor will supply the neces-
sary SCR gate current with the trigger diac. Assume a 50 V dc
power supply, 30° minimum conduction angle, and 150
°
maxi-
mum conduction angle with a 60 Hz input power source. At
approximately 32 V, the diac triggers leaving 0.66 V
of diac
voltage on the capacitor. In order for diac to trigger, 22 V must be
added to the capacitor potential, and 40 V additional (50-10) are
available. The capacitor must be charged to 22/40 or 0.55 of the
available charging voltage in the desired time. Looking at Figure
AN1003.8, 0.55 of charging voltage represents 0.8 time constant.
The 30° conduction angle required that the firing pulse be
delayed 150° or 6.92 ms. (The period of 1/2 cycle at 60 Hz is
8.33 ms.) To obtain this time delay:
6.92 ms = 0.8 RC
RC = 8.68 ms
if C = 0.10 μF
then,
To obtain the minimum R (150° conduction angle), the delay is
30° or
(30/180) x 8.33 = 1.39 ms
1.39 ms = 0.8 RC
RC = 1.74 ms
0.1
×
10
Using practical values, a 100 k potentiometer with up to 17 k min-
imum (residual) resistance should be used. Similar calculations
using conduction angles between the maximum and minimum
values will give control resistance versus power characteristic of
this circuit.
Triac Phase Control
The basic full-wave triac phase control circuit shown in
Figure AN1003.9 requires only four components. Adjustable
resistor R
and C
are a single-element phase-shift network.
When the voltage across C
1
reaches breakover voltage (V
BO
) of
the diac, C
1
is partially discharged by the diac into the triac gate.
The triac is then triggered into the conduction mode for the
remainder of that half-cycle. In this circuit, triggering is in Quad-
rants I and III. The unique simplicity of this circuit makes it suit-
able for applications with small control range.
Switching
Device
Voltage
or
Current
Source
Triac
R
C
SCR
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0
0
1
2
Time Constants
3
4
5
6
R
(
C
S
)
R
-------------------------
3
×
10
0.1
6
86,000
=
=
R
1.74
3
6
17,400
=
=
相關(guān)PDF資料
PDF描述
BT138-600G Octal Bus Transceivers with 3-State Outputs 20-CDIP -55 to 125
BT138-800G Octal Bus Transceivers with 3-State Outputs 20-LCCC -55 to 125
BT136-700 Transient Voltage Suppressor Diodes
BT136-700E Transient Voltage Suppressor Diodes
BT136-700G Transient Voltage Suppressor Diodes
相關(guān)代理商/技術(shù)參數(shù)
參數(shù)描述
BT136M-800G 制造商:PHILIPS 制造商全稱:NXP Semiconductors 功能描述:Triacs
BT136MSERIES 制造商:未知廠家 制造商全稱:未知廠家 功能描述:Triacs
BT136MSERIESD 制造商:未知廠家 制造商全稱:未知廠家 功能描述:Triacs logic level
BT136MSERIESE 制造商:PHILIPS 制造商全稱:NXP Semiconductors 功能描述:Triacs sensitive gate
BT136S 制造商:PHILIPS 制造商全稱:NXP Semiconductors 功能描述:Triacs sensitive gate